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IRESEARCH ON FREE ELECTRON LASERS

I W. B. Colson

Berkeley Research Associates, Inc., P.O. Box 241, Berkeley, CA 94701

I

II The research carried out during this contract has resulted in several review talks

and five publications. The work has been done in close collaboration with colleagues
at the Los Alamos National Laborato.y, Lawrence Liverrore Nationai Laboratory,
Lawrence Berkeley Laboratory, and other free electron laser (FEL) facilities.

3The research includes the derivation of better high-efficiency equations for

describing the FEL in the strongly saturated regime. The equations retain much of the3 simplicity of the old theory, but are accurate for high energy extraction. -The

dimensionless parameters of the equations are used to describe the LANL and LLNL
FEL experiments. In a publication, the importance of the dimensionless currentI1
density j is emphasized for describing many diverse FEL physic - ei rcts.

The effects of waveguides on the FEL radiation interactiu.. are derived and

presented in this report. The ELF FEL amplifier used a waveguide and is used as an
example. It was found during the study that the gain spectrum of high-gain amplifiers
like ELF can have sharp spikes. The spikes are not related to the use of a
waveguide, but are an important result of this contract. A review paper invited by3 qPjP discusses some the techniques used to simulate FELs of many different kinds.
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In the weak-field regime, the derivation of the FEL integral equation is presented I
with some simple cases solved. In the limit of low current, the integral equation is

used to derive relationships describing Cain degradation in terms of the FEL lineshape. I
A major FEL review paper was prepared and published in the Proceedings of the

SPIE. Many of the topics covered in research during this period are presented in the 3
review.

In order to use the FEL integral equation to undulator the affect of beam

distributions on the FEL interaction, several distribution functions describing realistic

electron beams are derived from first principles. Then, the characteristic function for 3
each distribution function is derived. The characteristic function gives a good

understanding of the effect of beain quality on the FEL bunching process and gain.

Another publication explores the gain degradation of FELs with several sample boam I
distributions. The integral equation is used to understand the gain spectra observed in
the Paladin experiment at 5m undulator length. 3

A method is developed for using the integral equation to give the evolution of the
phase-space distribution function when the beam quality is poor. The !ntegral equation

itself does not contain information about the electron beam, but can handle continuous

distributions of arbitrary shape. The resulting phase-space distortion is reconstructed 3
using the solution of the complex field evolution. The integral equation and the related
phase-space evolution are used to explain the formation of plateau's in the gain

evolution of Paladn at 15 m length. This is an important result of the contracting I
period.

A large review paper is prepared for North-Holland Publishing Co. describing I
many aspects of FEL theory.

2. FEL Equations for High Efficiency

The FEL equations used previously are the self-consistent pendulum and wave

equations. They provide a simple model of the FEL that is valid in strong and weak

optical fields for high and low beam current. The assumptions required to derive the 3
simple form of the equations are y a> 1 and N >> 1 where ymc 2 is the e!ectron beam
eriergy, and N is the number of undulator periods. S; o the mostl mportant aspects

ot the interaction take place near resonance, the changes in the electron energy,

Ay I, y are small when N .1, and the FEL efficiency is low. For high efficiency, in the

I
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tapered undulator or in a short undulator with few periods, the changes in the electron
energy are expected to be large. Below is a derivation of the generaizt d FEL

equations where N can be large and the FEL efficiency can large.

The electron motion is determined by the Lorentz force in the combined undulator
and radiation fields. For the helical undulator, the field is

=B ( cos(koz) , sin(k oz),0) , (1)

where X = 2t/ko is the undulator period, and B is the peak field strength. The3 corresponding electric and magnetic components of the radiation fields are

=E (cosy,-siny ,0) , Y= E (siM1,cosy,0) , (2)

I where == kz--t+, k = 2ntk = 21cc/w is the optical wavelength, 0 is the optical
phase, and E is the radiation field strength.

I The transverse velocity components of an electron in the fields (1) and (2) are
found by noting that the right side of the Loreniz force equation is a perfect time
derivative over one undulator period where B and E remain substantially constant.

The transverse electron velocity, co,, is
SK .AK3 = [ cos(koz), si(koz) , 0 ]+ Ay [ sinyi , cosy, 0 ] ,(3)

where K = eBXo/2nrnc 2 is the dimensionless undulator vector potential,

A = eE /2 7rmc 2 is the dimensionle s optical vector potential, and e = le I is the
electron charge magnitude. Typically, the value of K is near unity in most FELs. The

constants of integration have been set equal to zero indicating perfeut injection into the

undulator; imperfect injection is considered later. Using (3), the electron energy

* change is

7- =doKA cos(K+0) (4)

dt 7

where the election phase is = (k+ko)z-(,)t, and y= dyldt. The combination of

=1 and (3) gives the exact electron phase motion,

KA ( 2(woo - 2()r + 1)- 2 ) ( 2(,)w,)o - + (i ) cos( + )3 ((,)+(,))2(1 +K 2 -KA sin( + )+A 2 ) , (5)

whore . r ,:. The bunching mechanism for an initially random beam arizes fromI
I
I
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the important relation o cos(C+4). In order for bunching to develop, the electrons I
must be near resonance where - 0. Near resonance, the FEL frequency is

(=) = zwo/(l-pz), and in the relativistic limit (o :2, wo. Furthermore, it can be shown that

,,nax -(NsIN)2 where Ns is the number of synchrotron oscillations of trapped

electrons along the undulator length. Typically, A m~x - 10- 4 so that K -0 A for even 3
the strongest optical fields. In high efficiency FELs where the undulator is altered to

maintain resonance with trapped electrons that lose significant energy to the optical

wave, the untrapped electrons can drift far off-resonance. Allowing that t is far from

rsczn,ce, bit with the restriction << oo, the electron motion is accurately described

by the simpler equation I
v (1 -- 3v/4 N ) lal cos(+4) , 6) 1

where ( .. ) d(..)idi, r = ctIL is the interaction time over the undulator (C = 0 -- 1),

o is the electron phase velocity, and laI = (4cN)2 KAI(I+K 2) is the dimensionless

optical field amplitude.

In this formulation, electrons trapped near resonance, v = 0, are described

accurately, while untrapped electrons far from resonance, v ---- 4nN, are handled less

accurately. However, the untrapped electrons are expendable since they become

randomly spread in phase as well as uncoupled from the bunching interaction, as can 3
be seen in (6). For electrons near resonance, the bunching rate is determined by the

field strength la I. When la I <- , the optical field is considered weak, and bunching is 3
imperceptible. When la I >> 7c, the electrons bunch rapidly, and become trapped in

closed phase-space orbits. In strong fields, la! 4n2, the trapped alectrons sc.,te

at the dimensionless synchrotron frequency v s  la 1112, and there are Ns vsl2n

oscillations in time Az = 1. Integration of (6) can be accomplished numerically on a

small computer, or analytically in some specific cases. Because (6) is slowly varying,

numerical --steps can jump over several undulator periods. When N >> i, so that the

FEL efficiency is not too large, (6) simplifies further to take the form of the pendulum 3
equation.

An FEL that goes far into saturation should be tapered to improve its efficiency. 3
TaPerina can be added to the basic FEL equation of motion (6) by adding a phase

2 c'l-ra]tion, i. The equation becomes 3
v - ( I 3v,,'4rN ) la, cos( C A e) (7) U

I
I
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IThe amount of taper in the resonant energy is then Ayr/yr -- &4N.

In order to have a self-consistent theory, the complex, time-varying field envelope,
(E(t),e(t)), is allowed to vary slowly over an optical period (E -< o)E, 0 << no). The

transverse beam current, I , is the sum of all single particle currents, but an average

over sample particles, <..>, can be used if weighted by the electron density p. The

current is then i. =-ecp<o,>, and the slowly-varying wave equation can be written3 as
dC Ee'= -2ecKp< (e-S'/y) > (8)

dt

From the electron dynamics, the dynamic Lorentz factor is given by3 -1 (I-v14N) -y 1 with the static, resonant Lorentz factor y = (o (1+K 2)/20 0 )112 .

Then, in terms of the electron phase and phase velocity, the wave equation becomes
0

a =-j<(1 -v/4N) e -  , (9)

where the complex dimensionless field is a =ale"', and the dimensionless current

* density is

j = 8N(eirKL) 2p / y03mc2 (10)

I The current j determines the coupling between the electron beam and the optical

wave, and is the most important dimensionless variable describing an FEL. Without3 current j = 0, or with no bunching <..> = 0, there is no change in the initial optical field,

a(0) =ao. When j <1 1, the FEL gain is low, and when j >> 1 the FEL gain is high.

The combined equations, (6) for each sample electron and (8) for the light wave, are

valid for weak fields (la I ! e n), strong fields (la I >> t), low gain (j i n), high gail

S(j >> iT), low efficiency ( <Av> << 27rN ), and high efficiency ( <Av> = 27N ). The, "filling

factor", F="area of the electron beam"/"area of the optical mode", can be added to the

dimensionless current, j - jF to describe the optical mode coupling. When the FEL

is tapered, the wave equation is not altered.

In the linearly polarized undulator, each electron experiences fast, periodic

oscillations that are comparable to the radiation wavelength and modify the interaction

strength in the fundamental and higher frequency harmonics. To account for this

Sr(duced coupling, the dimensionless current j should include the factor (Jo(t)-J(,) )2

whre . 1K2 2(1+K 2). For LANL with K - 0.55, the reduction factor is (Jo-J) 2 = 0.9.I
I
U
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For LLNL ELF experiments and the later Paladin experiments K = 1, so that the i
reduction factor is (Jo-J 1 )2 = 0.85.

3. LANL Oscillators and LLNL Amplifiers

The parameters describing FEL experiments at LANL and LLNL are only j and N i

in the above equations. All other quantities, like la l, 0, , and v are dynamical, and

depend on j and N. For the LANL FEL oscillator, N = 40 while for the LLNL ELF FEL
amplifier, N = 30. The values of the dimensionless current j are obtained below.

The early LANL FEL (B. E. Newnam, R. W. Warren, R. L. Sheffield, J. C.

Goldstein, and C. A. Brau, Nucl. Instr. and Methods in Phys. Res. A237,187 (1985)]
had a beam current of / = 40 A with a beam energy of ymc 2 = 21 MeV (y = 42). The

undulator was L = 1 m long with wavelength Xo = 2.73 cm, peak field strength B = 3

kG, and N = 37 periods. The dimensionless current density was j = 3.6.

The newer LANL FEL [R. W. Warren, D. W. Feldman, B. E. Newnam, S. C.
Bender, W. E. Stein, A. H. Lumpkin, R. A. Lohsen, J. C. Goldstein, B. D. McVey, and

K. C. Chan, Nucl. Instr. Meth. Phys. Res. A259, 8 (1987)] has an improved beam

current of I = 130 A with the same beam energy (21 MeV). The beam radius is

rb = 0.1 cm so that th' new beam density is p = 8x10'. The electron pulse length is 3
Ib = 0.5 cm and is cz = 12 slippage distances in length. The beam energy spread is

still A'y / y = 2%. The FEL undulator is the same as in the last LANL FEL. There are
N = 37 periods of X0 = 2.73 cm wavelength with K = 0.55. The resulting resonant

wavelength, ?, = 10 l.m, is the same as in the last LANL experiment. The optical

resonator is also the same as in the last experiment, and is described by a Rayleiyi I
length of Z. = 63 cm and optical mode waist of wo = 1.4 mm. The resonator loss

results in a 0 = 50. The dimensionless current describing the new experiment is
j 50 and is significantly more than before.

The LLNL ELF experiments at X - 8 mm and 2 mm, used beam current of

/ 1000 A at ymc 2 - 3.5 MeV energy (the Lorentz factor is y 2 : 7.8) [A. L. Throop, T.

J. Orzechowski, B. R. Anderson, F. W. Chambers, J. C. Clark, W. M. Fawley, R. A.

Jong, A. C. Paul, D. Prosnitz, E. T. Scharlemann, R. D. Stever, G. A. Westenskow,

and S. M. Yarema, Experimental Characteristics of a High-Gain Free-Electron Laser 3
Arnplihcd Operating at 8 mm and 2 mm Wavelengths, presented at AIAA 19th Fluid

U

I P I



* -7-

Dynamics and Lasers Conf., Honolulu, HA, June 8, 1987]. The electron beam size

was elliptical in the transverse directions described by xb = 0.6 cm and Yb = 1.2 cm,

and extended over lb : 300 cm in length. The emittance was F : 0.07 cm-rad with an
effective energy spread of roughly Ayy = 6%. The jndulator length is L = 4 m with

period Xo = 9.8 m, and peak field B = 1700 G. There are N = 40 periods. The

fundamental waveguide mode area is Amodf 1 7.5 cm 2 so that the filling factor is
F 0.24. The FELs dimensionless current is j = 5700 with an electron density of

p 1011. The amplifier used an input power of Pi, = 30 W so that the dimensionless

initial field is ao - 0.3 with wavelength X = 2 mm.

The Paladin experiments first used a L = 5 m undulator, then later increased it to3 L = 15 m. The 5 m experiment [D. Prosnitz, T. J. Orzechowski, J. K. Boyd, G. J.

Ceporaso, F. W. Chambers, Y. P. Chong, H. W. Clay, G. A. Deis, W. M. Fawley, R. A.

Jong, B. Kulke, J. L. Miller, V. K. Neil, A. C. Paul, L. L. Reginato, D. Rogers, Jr., E. T.

Scharlemann, J. T. Weir, S. Yarema, K. Halbach, and W. B. Colson, "Using the Gain
Spectrum to Determine the Beam Distribution in the LLNL 5m Paladin Experiment",3 presented as a poster at the Ninth International Free Electron Laser Conference,

Williamsburg VA (September 1987)] used an electron beam with Lorentz factor Y = 85

and current = 600 A in a radius of rb 0.6 cm. The undulator length of L =5 m
contained N 62 periods of XO = 8 cm wavelength. The undulator strength was3 K = 0.875, and the laser wavelength was X = 10.6 rim. The optical made waist was

w o = 0.6 cm with a Rayleigh length Zo = 2 m. The electron beam particle density is

p = 1011 so that the dimensionless current is j z 50. With an input power of 1 MW,

the initial dimensionless field is a o  2.

The 15 m Paladin experiments [D. Prosnitz, T. Orzechowski, et. al., American
Physical Society Meeting, Baltimore, MD (April, 1988)] used a beam of i 600 A

again, but with the energy increased so that y= 91. The beam radius was rb 0.5 cm

with density p :-: 1.6x101 1. The longer undulator corlained N = 187 periods with K = 1

(B = 1957 G) and ?,o 8 cm. The radiation wavelength was ?.= 10.6 !tm with a3 IRayleigh length of Z o = 5 m and waist size wo = 0.6 cm. There are two betatron

oscillations along such an undulator. The input power could be 14 kW or 5 MW,
corresponding to dimensionless fields, a o  2 or ao = 38. The dimensionless current

density describing Paladin at 15 m is around j 1200.

I
I
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4. Parameterizing Physical Effects In FELs i
A paper was prepared for the Ninth International Free Electron Laser Conference

in Williamsburg, VA, Sept. 14-18, 1987. The paper shows the value of the

dimenior.less variables j, (, v, and a that have been developed for the theory

presented earlier in this report. The reference is W. B. Colson and J. Blau, i
"Parameterizing Physical Effects in Free Electron Lasers", Nuclear Instruments and

Methods in Physics Research A272, 386 (1988). 1
In the paper, the parameters describing the free electron laser (FEL) experiments

from 1976 to the present are bri3fly summarized. The dimensionless current density j

is important for determining the relationship betwe.n experiments and evaluating many

FEL effects. Developing a consistent description of all the diverse FEL systems starts

with the electron phase in the combined undulator and optical field forces. Over the

entire undulator length, the nonlinear coupling between the electron phase and the

electron phase velocity uniquely defines the dimensionless optial field strength. The

dimensionless current density j is then the resultant coupling between the averaged

electron beam phases, and the dimensionless optical field strength in the wave

equation. The gain regime of each FEL can be simply identified by j.

Many FEL effects can be expressed simply in terms of j. The importance of

optical guiding is given by jZ3 > 7 where zo = "Rayleigh length"/L. The spectral

linewidth expected in an FEL oscillator after n passes is given by Z (njN2)- 11 2. The

number of plasma oscillations in the FEL beam is given by (jINK2)1
,
2 . In the high

current regime, both saturation (strong optical fields) and inhomogeneous broad-niny.. ..

are determined by (j/2)1/3. In weak optical fields, FEL dynamics depend only on the

parameter j. and thb distribution of initial elecron phase velocities. The FEL integral

equation method provides a way of systematically evaluating the effects of an arbitrary

distribution of electron phase velocities. I
I
I
I
I
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Nor-th-Hollarld, Amstrdarn

PARAMETERIZING PHYSICAL EFFECTS IN FREE ELECTRON LASERS

3 W.B. COLSON and J. BLAU
Berkelery Research Associates. P 0. Box 241, Berkeley, CA 94701, USA

U The dimensionless current density j is important for dectermining the relationship betweeni different exper mental systems as well
as e-vauating many FEL effects. Multimode operation in the FEL oscillator is expressed in terms of a mapping dep:nding only on jU and the resor'ator Q.

1. Introduction is a function of the fixed wavenumbers k and k5 so
that the only dynamiucal variable in (t) is z(t); in theIIt is usua~y desirable to identify a few dimensionless relativistic Limit, k a'> ko, is the electron phase in a

variables that summarize reoccurring combinalions ol section of the beam one optical wavelength long, 6 =

physical parameters in a complex problem like the free (k + k0o) Az =kilz.
electront la -cr (FELl. Dimrensionless variables can fur-
ther be used to gain insight into relevant physical
processes without reference to detailed calculations or 3. The electron phase velocity v'
simulations [1). A particular ch~oice of variables is pre-Isented here that has proved useful over mai-,v years of Eouino h ih n lcrn ae lc hlresearch .)n several different FEL oscillator 'd ampli- tev otio pofthe lioght h an lton takes lacer wih
fier experiments. hybt rpgetrug h ogudltrwt

many periods N = L/X 0 -z- 1. The_ average electron

evolves for a time L/fic, where #,c is the average
I Th lcro hs electron z -elocity. In a relativistic beam 0, - ,- 1 so

that the common interaction time is L/fic -L/c for

An outline of FEL theory [1] showing how the all electrons. We chose die dimensionless time T =I dimensionless current j develops starts with the elec- VrIctL -ct/L. so tl.,t a pass through die undulator is
tronphae i th comine unuiaor ad oticl feld described by r - 0 - 1. Even the faster 1i8,iit wave,

tfon= phe inothe obnred dtivoi ansotic o na fieuld traveling at speed c. evolves for nearly die same time as

forcfeld th woc areltivA0isi lcrni m nu electrons, -r - 0 - i - 0(y -2 ) + -. I . Other time-I to Fild ithwaveengh A isscales defined by the plasma frequency in a relativisitic
axK'~~ beam, or the high-gain exponential growth-rate in die

where ko - 2 7/ 0. z(t) is the electron z position, case of large]j, can become important in .specific FEL

K K- eBX 0 /2.rniC2 , e is die electroni charge magnitude, experiment. But, instead of making a commitment to aZi is teeetomascishesedolghad se-scale that may, or may not, be re-levant, we use
m sthe e rlector as fied E petron bucig, corn t Ti rT 0 - 1, and relate other effects to the evolution timehe rs dualo fiel- lecton unchn,,coheent over which they might o-ir, L,/c; the to-a] evolutionemnission, and high efficiency all require that the elec- tiesalysmprn.
tror, energy y(z)m9 2 and the electron tsosition z:r) tiesalysmprn.

evolve in the presence of the copropagating radiation Ligteim r.helcro pasvlot'b-
The Lorentzm force gives the rate of energy change comes

yt) cr~ E a K e'"'"E e' " v t(-) -- L[(kA k,)Pz (i) k] i

w here (-)di ),'dr 1When v 0. the electron cx-

where the optiLal ficld strtnzth is E with carrier periences resc-iant optical id undula~or field forces

frequcnc:, w kc 2 c A an~d ptia~e , The c !cr which mnaximize coupling. The re-sonant FEL wave-

1 ( 1, ()) aO~dCa atualan useful hieI , $ cc-ePhin.
Ii~l~dP isfuihn iiin
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4. The dimensionless optical field a - The response to bunch%:,. .;,, :oupling between the
bunched electron beam and the light wave. is finall,

Both the electron phase and phase velocity evolve in determined by the dimensionless current j.
tume governed by the Lorentz force equations of mo- Each definition is found to be physically meaningful
tion In the limit of large N (implying low efficiency), and useful in the evaluation of FEL effects.

the phase and phase velocity are coupled by the dimen-
sionless complex optical field a = I a e' through the
pendulum equation, 6. FEL experiments described by j

0c a Icos( " + 0), (1) Table I summarizes many of the relativistic (y > 5) IFEL experirments from 1976 to the present. The location

where I a = 4Nei7KLE1/y 2mc 2 . When I a - ir, there and date of the experiments are given in the first
is visible electron bunching in phase space after a single column; no date is given for the last eight experiments
pass through the undulator. When I a I c ir, the bunch- that are planned for the future. The electron beam
ing is imperceptible, and the optical field is weak. When current I (A), given in amperes, and the electron beam I
I a 1 i-, the optical field induces a phase spread over area irr,2 determine the electron beam density p = 3 ×
several optical wavelengths and bunching is diminished; 109 I(A/ecirr!. (There are two practical corrections to
this is saturation in strong optical fields. The trapped the value of j listed in table 1 that are not defined in

electrons in strong fields execute synchrotron oscilla- eq. (3): the "filling factor", describing optical mode I
tions about the phase r/2 with frequency I a 11/2 in coupling by the substitution j -j(r, 2 /w2) where w0 is
units of T; when I a I = 47r- there is one synchrotron the optical mode radius; and Bessel function factors for
oscillation along the undulator. When eq. (1) is ex- linearly polarized undulators [1]). Notable in the list is
tended to include corrections for higher efficiency, the the small range of dimensionless currents j that have
coupling between " and i' is still given by the dimen- been explored so far; exceptions are the low currents of
sionless field a. the storage ring devices, and the high currents of the

ELF experiments at LLNL. Below -are some examples I
of important FEL effects that can be expressed in terms

S. The dimensionless current density j of j. Only the basic physical concepts are outlined

The evolution of the Light wave is governed by the without detailed derivation. The scaling in terms of

transverse optical wave equation driven by the trans- physical parameters like 1, N, K, and y are also given

verse beam current J .. An individual electron in the for each example.

beam contributes a current in proportion to its trans-
verse motion -ecfi8 e'k*'.The slowly-varying field en- 7. Gain determined by j
velope a(,r) can only respond to the average current in
a sma.ll volume element a few wavelengths of light long, Two operating regimes with high and low gain are
and weighted by the electron beam particle density p. explored in the experiments reported in table 1. The .

The wave equation for the dimensionless optical field weak-field coupling between the electron beam and
envelope is then light is maximum when the initial phase velocity is at

d- -~e-', (2) resonance, ,(0) = - 0. The FEL gain that might re-

where ( • is the average over sample electron phases suit from good coupling is defined as G ,a;/a2 - 1,

, and the dimensionless current density is where aF is the final field amplitude at r - 1. and a0 is

2 -~ the initial field amplitude.
r KL) /,Yc. (3) In the low-gain FEL, where j < 1, the maximum gain

It is j that deterrmnes the response of the optical wave is G - 0.135j at v% - 2.6. While the maximum coupling I
to bunching in the beam. The dimensionless current j occurs at resonance, the energy lost and gained by the

provides the coupling between the electron beam and electron beam cancels so there is no net gain; operating
the light wave so that each gain regime can be simply off resonance upsets this cancellation and allows useful

identified by j; when j :s 1. the FEL gain is low, when notero gain. There is no significant optical phase shift I
j-* 1 the FEL gain is high. in the low-gain regime. The natural gain spectrum
In summar,, bandwidth is A, - ir about Y, - 2.6 with a correspond-

The identification of the electron phase and the ing range of optical wavelengths AA/X -' 1/2N.
dimensinless interaction time T leads directly to the In the high-gain FEL, where j :3 1, the maximum I
correcsp, Tiding electron phase velocity P - f. gain is G - expf(j/2)1 /3v/3]/9 near resonance ,, = 0.
The ,,Lu:ing between the electron phase and phase There is significant optical phase evolution, o(?) -
vei :r,. the cause of bunching, is given by the di- (j1/ 2)/3 r1/2 .In the ELF experiments of table ]. 1 = l04

, ,rtiels ,pta field a - a eC. so that G - 10 12 and .1(p - 31r. The natural gain spec-

III(&). OP}qERAL THEORY 3
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Table 1
Free electron lasers

FEL N X, K A Comments

(A) (cm) (Mrm) (cml

[21 Stanford '76 007 48 160 3.2 0.72 1. 0.3 02 First A. RF. H

[3] Stanford '77 2.6 86 160 3.2 0.72 3.4 0.3 6 First 0, RF, IH
[41 Stanford '80 1.3 85 160 3.3 0.71 3.4 0 14 3.6 0. RF. H
[51 LANL '82 20 40 37 2.7 0.55 11 0.16 1.8 A. RF. L.

6 - 101,

[6] MSNW/Boeing '83 3 38 91 2.5 0.44 11 0.16 2.8 A. RF. L.
6 - 337Y

[7) TRW/EG&G '83 10 50 75 3.6 0.63 11 0.17 1.6 A. RF. L

[81 LANL '84 40 40 37 2.7 0.54 11 0.15 3.6 0, RF. L
[9] TRW/Stanford '84 2.5 130 153 3.6 0.97 1.6 0.1 3.4 0. RF. L.

6S -47,

[10] Orsay ACO '84 0.03 326 17 7.8 1.2 0.65 0.03 0.0001 A. SR, L.
D - 100

[11] Novosibirsk 84 7 686 22 6.9 2.7 0.62 0.03 0.06 A. SR. L.
D - 28u

[12[ Frascati ENEA '85 2.4 40 50 2.4 0.35 11 0.1 0.14 0, M, L

(13] Orsa, ACO '85 0.2 432 17 7.8 2 0.63 0.03 0.004 0, SR, L.
D -100

[141 UCSB '85 1.25 6.8 160 3.6 0.11 400 1 0.35 0, V. L

[15] INFN LELA '85 0.018 1224 20 12 3.5 0.51 0.04 0.00006 A, SR, L

[16] LLNL ELF '85 500 7.5 30 9.8 2.8 8700 1.5 9000 A, IL. L

[17] LANL '86 130 40 37 2.7 0.56 11 0.14 53 0. RF. L,
6 -187T

[18] Stanford Mark III '86 20 87 47 2.3 1.5 3.1 0.07 3.2 0, RF. L

[19] LLNL ELF 86 850 69 30 9.8 2.5 8700 1.5 14100 A, IL, L
(201 LLNL ELF Tapered '86 850 6.9 30 9.8 2.4 8700 i.5 14400 A. I LL.

8 - 5017
[211 LLNL ELF '87 1000 7.8 40 9.8 1.1 2000 1.5 7200 A, IL, L
[122] Boeing/Spectra '87 100 223 229 2.2 1.3 0.5 0.06 687 0. RF. L.

6 - 927

[23] Rocketdyne/Stnford '88 20 75 80 2.5 0.61 3.0 0.08 6.2 0, RF, L
[241 Bell Labs 5 24 50 20 0.93 240 2 2 0. M. H
[251 BNL 22 588 39 6.5 2.3 0.6 0.07 0.25 A. SR. L

[26] United Kingdom 10 118 76 6.5 1.9 11 0.3 8.9 0, RF. L
1271 LANL XUV 100 400 750 1.6 0.79 0.08 1.6 414 0, RF. L
[28] Duke University XUV 270 1958 422 6.4 1.6 0.03 0.06 37 0, SR. L
[29] NBSXUV 2 363 130 2.8 1 0.23 0.04 0.6 O. M, L
[301 LBL/BNL XUV 200 1470 870 2.3 2.6 0.04 0.03 1360 SR, SR.A. L

I[311 Beijing PRC 13 40 50 3 1 11 0.1 5 0. RF. L

* RF - rf linac accelerator, IL - induction linac accelerator, M - microtron accelerator, SR - electron storage ring. V - Van de
Graaff electrostatic accelerator, H - helical undulator polarization, L - linear undulator poiarization, S - 4 - tapered undulaor

FEL, D - & -klystron undulator FEL, A - FEL amplifier, 0 - FEL oscillator. SRA - superradiant amplifier in a long.

single-pa.ss undulator.

trum bandwidth A = -ij t /6 about resonance with a each other through the changing optical field. Coulomb

corresponding range uf optical wavelengths is X/X forces can be incorporated in eq. (1) as an additional

1
1 6/2N that scales as 6X/, = 11/ 6 /(yN) 1 / 2. force depending on the longitudinal position of all other

electrons in each optical wavelength [1]. It is then found

that plasma oscillations can occur in the beam as it

8. lasma oscillations determined by j passes through the undulator: the number of plasma
oscillations is

In the high-gain regime described above, interpar-

tice Coulomb forces play no role The hig.h-gain regime NPtASM-, 8 87,NA. ()

cs
is trulv cllective. nowever, since the electrons influence

I
I
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Even in the LLNL ELF expenments with the highest j. width. The competition between the coherent bunching
NPLASMA , 0.6. and gives only a minor effect- The scal- and random thermalizing can completely alter the prop-
ing is NPL N(I/-N)CC. erties of the FEL interaction and, of course, reduce the

gain. In strong optical fields where the FEL interaction 1
induces a large phase-velocity spread, beam quality is

9. Optical guiding determined by j less important.
In the case of low gain and weak fields, a < v is

FEL optical guiding can occur when the high-current sufficient to avoid significant gain degradation. The

electron beam alters the propagation of the light wave critical spread in energy scales as dy a N-1 showing

and continually focuses it back into the electron beam. that a longer undulator increases the FEL's sensitivity

The optical phase evolution in a distance dz along the to electron beam quality.
undulator is dip - (jr 2/2wg) t ' 3 dz/2L including the In the case of high gain and weak fields, the ex-

filling factor. Natural diffraction produces a phase shift ponential growth-rate of the optical field is large so that

of the opposite sign, d(OD = -dz X/rwo. If the FEL bunching can compete better against random thermali-

interaction is to offset natural diffraction, we must have zation. The critical spread in the high-current limit is I
do > dOD so that a large optical wavefront collapses to , -j/ 3 ; for large current, j - 104 , o can be almost 10

approximately the electron beam size. Making the rough times the low-gain critical spread. The high-gain critical

estimate wo = 2r to simplify ti'e optical guidinig condi- spread is independent of L, since j a L- and a, = .5 vo
tion, the optical mode area that can be propagated a L, and scales as 1I/3./Y.

without diffraction becomes

4LX
IrW6 = (5) 12. The onset of saturation determined by j

The mode area becomes smaller as j is increased, and is
independent of L since j = L3 . The scaling in eq. (5) is In the FEL oscillator, the optical field grows to
w. a I-'/4 showing that phase guiding requires a sub- saturation over many passes of amplification; in the

stantial current. FEL amplifier, the optical field grows to saturation in a
single pass. In both cases, the gain decreases from its
weak-field value when the optical field is strong enough

10. Optical linewidth determined by, jto move some electrons by - with respect to other10. ptial ineidthdetrmied y jelectrons.

In the case of low gain, the onset of saturation
The sectral inewidth in the FEL oscillator is nor- occurs when the field amplitude is a, - ir. The change

really determined by mode competition among many in the bunched beam's phase velocity is determined by
closely spaced wavelengths in a long overmoded reso- the height of the phase-space sparamx 1; - 4al" =
nator. The initial spontaneous spectrum has a width 2hr. Since of, = 4rhAs , the natural efficiencv is n =
A,(k) = 27r centered around resonance v(k) = 0. The 1/2N.
gain bandwidth is smaller, v(k) = ir centered around In the case of high gain, the onset of saturation

,(k) = 2.6. After many passes n, the power at wave- occurs when the field amplitude is a,= 2(/2)/. The
lengths near peak gain of G-.135j begin to grow dependence on j in the high gain case results from the
substantially compared to wavelengths with less gain, altered electron dynamics in eq. (1). For,.7 = 104.

and the spectral linewidth expected is saturation occurs at substantially stronger fields than in2ff
(6) the low gain case, a, W20077*-ff. The corresponding(njk ) (6) change in the bunched beam's phase velocity is 6,s, =

2(j/2)1/3 so that the natural efficiency is r7,=
assuming negligible losses After n = 103 passes, the (j/2)/3/2rN. For j = 10', the efficiency is', -!/2, ,

spectrum of a moderate gain oscillator with j = 5 nar-
rows by about 102. The spread in wavelengths scales as

/d13. Muftimodes in the FEL oscillator determined b% j
and Q

11. Hecrron beam quality requirements determined by j The FEL equations of muAion. eqs. (1) and (21.
depend only on the initial values a( ,. ',. = 0, and the

Man, experiments use an imperfect electron beam dimensionless current j; the initial electron phases are
witfl a rangte of initial phase ve-locities a P, that are randomly spread. In the overmoded FEEL oscillator, the

comp irihie .kith the FEL.'s natural gain spectrum hand- optical field is free to take on any value consistent wth 1
IllI( GENERAL IHE(.R\i
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I P # of mode.
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Fig 1. On the left is the intensity-contour plot of P(j, Q), with larger values of P dr.wn brighter and a scale at the top. The
corresponding plot of the number of modes in the FEL oscillator is shown on the right.

the physics determined by the equations. For modes than - 4 modes, the FEL spectrum appears chaotic,
above threshold, the power will grow to saturation as and continues of evolve. The field strength where mul-
determined by the resonator losses. To describe losses, timode behavior starts is seen to be atF"2 = 21r, just the
the optical power is taken to decay as 0: e - IQ over value needed to start synchrotron oscillations!
many passes n in the absence of gain. After many
passes n, saturation decreases the gain/pass to equal
the loss/pass, so that the final steady-state power and Acknowledgements
mode structure can only depend on j and Q.
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5. Wavegulde Effects In the FEL

Some applications, like the medical FELs, could make use of longer wavelengths
like X= 1lnO m up to 1mm. The LLNL ELF FEL, the UCSB FEL, and the Hughes
FEL, all use waveguides to counter tne detrimental effects of free-space diffractions

with long wavelengths. Designing an FEL to operate at long wavelengths can lead to
the consideration of a waveguide to confine the wavefront from excess diffraction.
Free space diffraction can spread the optical wavefront away from the co-propagating
electron beam and reduce coupling. FEL coupling is proportional to the filling factor F,

so that the dimensionless current density, j, should be replaced with jF when mode
coupling is important. The filling factor, F, is the ratio of the electron beam area to the
optical mode area whether in a waveguide or free-space.

The natural distance for a light beam of wavelength X to double its initial beam
area, rWo, is the Rayleigh length wZ/x. Comparing this length to the undulator

length L defines the dimensionless Rayleigh length zo- irw2/Lx. Without a
waveguide, the optical wavelength is determined by the resonance condition,
X = X0(1+K2 )/2 y 2 where K = eRX./27Tmc 2 is the undulator parameter, Xo = 2n/ko is the
undulator wavelength, and ymc 2 is the electron beam energy. In a waveguide, the

I resonance condition can be modified, but remains roughly correction with the FEL is
far above the waveguide cut-off frequency. The Rayleigh length becomes
zo = 2nwoy 2/(1+K 2)NX , and expresses how an FEL with a low energy electron

beam gives a short Rayleigh length.

3 For any FEL design, the filling factor should be near F = 0.5 for optimum
coupling. If the electron beam is larger than the optical mode, F> 1, then much of
the electron beam does not see the optical wave and does not bunch. This part of the
beam is lost. If F << 1, the electron beam only amplifies a small portion of the optical
wavefront and the coupling is poor. At long wavelengths, the optical mode tends to be
much larger than the electron beam so that coupling is small. The filling factor could
be increased for an optical wavefront of any size, if the electron beam size is
increased. But, as the electrons move off of the undulator axis, approaching the
undulator magnets, the field strength B increases and deflects electrons back towards

i the axis causing betatron oscillations. The extra transverse motion decreases the z

velocity of the relativistic electrons and changes the resonance condition. The change
in the electron phase velocity in a matched beam with radius rb is

I
I



-16-

AVP = 4tN(Kkorb) 2/(1 -K2 ). Gain degradation begins when the beam radius is large I
enough to cause Avo = ic. The limit on the beam radius for good coupling is then

rb < (1+K 2)112 oI/4nKN1 /2. For K = 1, we have rb < 0.01Xo, or for K r 1, we have

rb < 0.01Xo/K.

When natural diffraction spreads the optical wave away the electron beam the I
filling factor is reduced further; assuming the light remains in the lowest order

Gaussian mode with its waist at the center of the undulator, the average filling factor

over the undulator length is F = Fo/(1+1/12zo2), or F =o/(Zo+1/12zo) where
0 e = rb(7r/LX) 1/2 is the dimensionless electron beam radius. Typically, Oe = 1 in an

FEL, but the following arguments are independent of that value and only depend on

the Rayleigh length z o. For zo - 0, F - 0 and coupling -->0, because the optical

wave spreads away from the electron beam at the two ends of the undulator; for

z o  co, F --> 0 and coupling ---> 0 again, because the wavefront is too large compared

to electron b3am. The maximum filling factor, F max = Fo/2, or F max = 3- o2 occurs

at zmax = (12) - 1/2. The maximum Os relatively broad in z o and F max drops to half of

its peak value, I3a2/2, at zo = 0.11 and 0.75.

The restriction on the spread of electron phase velocities, or the beam radius,

together with the requirement of good coupling, or large filling factor F, gives a

restriction on the Rayleigh length in terms of -y and N. To relate rb and wo, assume

that the filling factor is not too small, say F > Fo 
> 0.1, so that W0 <- 3 rb. Then, the

dimensionless Rayleigh length is limited by zo < y 2/itK 2 N 2. Either a low energy beam

or a long undulator can limit zo to a small value and decrease the filling factor. The

limit is relaxed when K is small, because the electron beam can be expanded to

support a wide optical wavefront without much diffraction. But, the FEL gain is small

with small values of K; recall that G o K2. Gain degradation begins to occur when

the coupling :s reduced by small values of F. The peak value of F, -3o 2 , decreases

to less than half its value when the limit above restricts z o < 0.1. Therefore, an FEL

design requires
7 > KN/2 (11) 1

so that natural diffraction does not significantly decrease the interaction strength. An

FEL wfth tow electron beam energy and a long, strong undulator, requires a

waveguide for good coupling strength. The inequality above is then well-satisfied:

I
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U y 42 x KN/2= 10. If the wavelength of the FEL is pushed up to X =100 pIm by

decreasing the electron beam energy, then the new Lorentz factor is y 13. For the

I values of K and N, the inequality is not dramatically satisfied, y = 13 KN/2 Z 10,

and a waveguide can be considered to improve or maintain coupling. At longer

wavelengths yet, the waveguide probably becomes necessary.

If an FEL requires a waveguide for good coupling, there is a change in the FEL

resonance condition. In a single waveguide mode, the cross-section of the mode can

be used in the filling factor to estimate coupling to the mode. The electron beam size

should be close to, but smaller than, the radiation cross-section for best coupling.

Assuming the electron beam !s on-axis, the mode should have a transverse electric

field on-axis as well. Higher order modes will average to smaller coupling if the

electron beam size is not much smaller than the mode. If the FEL gain is not too

large, higher order modes might be below threshold, or out of resonance with the gain

3 spectrum bandwidth. The following analysis can help determine this coupling and

resonance.

Waveguide modes are separated into two classes: TE - transverse electric modes

where the longitudinal component of the electric field E, = 0 everywhere, and TM -

transverse magnetic modes where the longitudinal component of the magnetic field

B, = 0 everywhere. The time dependence of the waveguide fields is taken to be

e-iot with longitudinal dependence - e + ikz. At the waveguide wall, the TE mode

boundary condition is Bz'= 0, while the TM mode boundary condition is E, = 0. The

waveguide cross-section and boundary conditions specify an eigenvalue problem with

Ia number of eigenvalues Apq, where p,q = 0,1,2,3,.... are eigenvalues that specify the

mode. For a given frequency, the wave equation in the waveguide determines the

3 wavenumber kpq for each value of pq,
kq =po)2Ic 2 -Aq 2 (12)

When the frequency is below cut-off, c,/c Apq, the wavenumber kpq is zero, or

imaginary, and mode does not propagate; (,Opq = CApq is called the cut-off frequency of

the waveguide.

All waveguide modes have the form E, - e + ikpqZ--i0t The backward
Iikp, Zpropagating wave, E, '-_ e , results in an FEL interaction at rather long

wavelengths. It can sometimes be of interest, but most applications of the relativistic

I
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FEL interaction seek shorter wavelengths. Therefore, the backward propagating wave I
is not discussed here, and we concentrate on waveguide modes with form

E e ikpqzt When the polarization of the waveguide mode is chosen to match I
the electron motion in the periodic undulator field, we have the best coupling. The
form of the transverse electron motion is P,.cc eikoz where Xo = 2r/ko is the undulator I
wavelength. The fourth component of the Lorentz force equation governs the electron
energy evolution and bunching. It has the form y c E - ei(k° + k )z - iot and
naturally defines the electron phase C = (ko+kpq)Z-0t where ko, kpq, and o are fixed
by the FEL design, and (t) follows the evolution of z(t). The corresponding phase 3
velocity is - t. Generally, the electron phase and phase velocity evolve over the
whole undulator length L so that it is natural to relate the time t to the evolution time

L/cz = Lic in the relativistic FEL with electron beam z velocity Pz- The natural
definition for the electron phase velocity is then v = L[(ko+kpq)Pz--f/c]. The electron

phase velocity v(t) depends on ko, kpq, co, and L, which are fixed in an FEL design, I
and follows the evolution of the electron z velocity Pz(t).

The electron motion in the periodic undulator and interaction with the waveguide I
mode are resonant when v = 0. This occurs at the resonant frequenCy
,)* = c(ko+kpq)pz where kpq = ((2/c-A 2 )"/2. The Pquatiii can be solved for o)*

in terms of ko, kpq, and [., and the eigenvalue Apq depends on the waveguide
dimension and shape. For the rectangular waveguide with sides a and b we have

Apq L + a2  2 (13)

where p,q = 0,1,2,3 ...... but not both p = q = 0. For the circular waveguide with
radius R, i

Apq - xPR (14) 1
where Xpq is the qth root of Jp'(Xpq) = 0. For both waveguides, the cut-off frequency
is A, C Pq. Assuming a circular waveguide with R = 5mm, the lowest order mode 3
gives roughly A01  .R, and a cut-off frequency (,)ol - ciTIR : 30GHz.

The radiation phase velocity in the waveguide mode is given by 3
v, c(1, c m2 2b2o' i....) where we take the short waveguide dimension to be

I
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1 b = 5mm. The radiation group velocity is given by vg = c(1 -c 27C2 12b 20 2 +....). The
slippage distance of the field nodes over the electrons is s = (vp-vz)LIc where

Vz = c(1-(l+K2)/2y 2) is the electron z velocity.

Expanding in Apq gives the form of the phase velocity v = v( ) + Avpq + .... where

v(0) is the old phase velocity definition without waveguide corrections,
v( -

) L[(ko+(o/c)Pz--o/c], and AVpq is the first order waveguide correction in Apq. The3 old, unperturbed resonance condition, v(°) = 0 gives the resonant frequency
W" -- ckoi(1-P3,) = 2y 2cko/(1+K2). A relativistic FEL that is near resonance o - &* for3 maximum coupling, has a shift in phase velocities caused by the waveguide,

NXA2q I+ 2)

Avp(,= N X( Apq(1+K (15)8n7 2

where N = L / Xo is the number of undulator periods. The shift in resonance is

negative, and diminishes when -, -7 . In a rectangular waveguide,

I AV t N X_ N (1+K 2) [P.2 . (16
Aq3-y 2 a2b 2  (6

If a circular waveguide is used, the shift is

I AvC N 2(1+K2) _q 2  (17)

I The ELF FEL experiments at LLNL in 1985 provide the first results of an FEL
operating in the high-current, high-gain, high-efficiency regime [T. J. Orzechowski, B.

Anderson, W. M. Fawley, D. Prosnitz, E. T. Scharlemann, S. Yarema, D. Hopkins, A.
C. Paul, A. M. Sessler, and J. Wurtele, Phys. Rev. Lett. 54, 889 (1985); T. J.I Orzechowski, E. T. Scharlemann, B. Anderson, V. K. Neil, W. M. Fawley, D. Prosnitz,
S. Yarema, D. Hopkins, A. C. Paul, A. M. Sessler, and J. Wurtele, IEEE J. Quantum3 Electronics QE-21, 831 (1985)]. These experiments used a waveguide because of the

long-wavelength of the radiation and the long interaction length. A free radiation field
with a mode radius comparable to the rdius of the ELF electron beam would have a

Rayleigh length of ZO = 7c(2r, ) 2/1X :: 2.4cm; less than one tenth of the undulator length.
Therefore, ELF must use a waveguide to confine the radiation near the electron beam

I
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for further amplification. A rectangular waveguide, 10cm by 3cm, is used with the TE01  i
mode so that the electric field extends along the long dimension of the guide. The

undulator field is oriented along the short dimension so that electrons "wiggle" in the 5
long dimension parallel to the radiation electric field.

The phase velocity of the radiation in the mode is given by 5
Vp = C(1 + c 2nt2/2Y 2(o2 +....) where the short waveguide dimension is Y = 3cm. The
radiation group velocity is given by vg = c(1 -C21 2/2Y 2o)2 +....). In ELF, the operating 3
frequency, o = 35GHz, is far above the cutoff frequency, (o, = c7riY = 5GHz, so that

the phase and group velocities are close to c; v E LF 7 1.01c and VE LF = 0.99c. The

slippage of the field nodes over the electrons is s = (vp-vz)L/c = 0.09L where

vZ = c(1-(1+K2)/2,y 2) is the electron z velocity. For ELF, the slippage distance is then

given by s = N. as in most FELs. This slippage distance is s = 24cm, or about
1/12th of the undulator length, and only 1/20th of the electron beam pulse length. In

one pass through the amplifier, information is transferred only over this small slippage m
distance so that sections along the electron and light pulses evolve independently.

The TEO1 waveguide mode area can be estimated by averaging the field over the

waeguide cross section. The effective TEO1 mode area is roughly given by

A01 =2XY/7 -19cm 2 where X= 10cm and Y=3cm. This high gain FEL is

amplifying a mode that has X = 10cm width using an electron beam of about
T, 4mm radius. This mismatch, or "filling factor", F= 7Tc2/Aol, has the small value 3
F = 0.026. Since the bunching electron beam only amplifies the light within the

electron beam cross section, the small filling factor, or coupling, could be changed as

higher order modes are excited during the FEL interaction. In the short direction, the
beam-mode mismatch is Te = 4mm compared to Y = 3cm, while in the long direction

the mismatch is much greater, re = 4mm compared to X= 10cm. After th' FEL I
bunching time plus one or two e-folding distances, the next higher-order symmetric

modes in the long dimension could mix with the fundamental TEO1 to reduce the mode

size and increase the filling factor. Therefore, for the later stages of the interaction

along the undulator, it could be more appropriate to use a larger filling factor as more U
representative of the interaction coupling.

I
I
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1 6. Gain Spectrum Spikes In FEL Amplifiers

Recently, it has been found that sharp spikes can appear far from resonance in
the gain spectrum of high-gain, high-power FEL amplifiers with good beam quality. At

the spike, gain is larger than in the rest of the broad, smooth gain spectrum.

The FEL gain spectrum plots gain, G, against a quantity like the laser

wavelength, or the electron beam energy. The FEL gain spectra for (i) low gain in

weak optical fields, (ii) low gain in strong optical fields, (iii) and high gain in weak
optical fields have been understood for some time, and in each case, the curves have3 simple, smooth shapes. Surprisingly, the next logical case, (iv) high gain in strong

optical fields, has not been explored, and is not simple or smooth. The high-gain,

I strong-field gain spectrum can have sharp spikes located far from resonance

superimposed on a simpler, broad and smooth curve. The gain at the peak of a spike

can be significantly higher than in the rest of the spectrum.

The figure below shows an example of a gain spectrum for the new case of high

gain and strong fields (j > , laI >> 7r). The initial field is Ial = 10, but the high

current density, j = 3000, increases the field to saturation la I= 4(j/2)23 = 500 near

the end of the undulator. Because the FEL reaches saturation, the gain is significantly

reduced from the weak-field, high-gain example with the same current. The

dimensionless parameters selected here roughly describe the ELF FEL amplifier at

3 LLNL, but with ideal beam quality.

j>>C, I a1>>71 30001,I
-30 vo  30

i FEL Amplifier Gain Spectrum with a Spike.

I
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The surprising structure in the gain spectrum above is caused by saturation, and

the subsequent synchrotron osciflation of trapped electrons. A slight change in Vo

away from the spike causes the saturation peak to occur just beyond, or just before,

the end of the undulator.

The existence of gain spectrum spikes means that the maximum gain and

efficiency in an FEL amplifier occurs far from resonance over a narrow range of

resonance parameters. Any FEL amplifier design would normally seek high beam 3
quality so that high gain could produce saturation in strong fields. The discovery of

the sharp resonance for just these conditions means that the benefits of higher beam 3
quality may be underestimated.

The necessary conditions for the gain spectrum spikes are high-gain, saturation, I

and good beam quality. If the LLNL ELF experiment had 5 times better edge

emittance, the spike could have possibility been observed. But, the actual beam

emittance "washed out" the spike. The LLNL ELF II or IMP experiments [4] have

substantially better beam quality than ELF, and may be able to observe the gain

spectrum spikes far from resonance.

7. SPIE Review of FEL Simulations 3
In this invited review article, the FEL provides a unique physical system for

analysis with computer simulations. The only physical constants needed are the 3
electron charge and mass, and the speed of light, in order to accurately represent

complex effects such as short optical pulse evolution, high-power saturation, diffracton

and optical guiding, electron phase-space evolution, noise, high-gain exponential

growth, and high-power multimode instabilities. The theory uses (i) the relativistic

Lorentz force for each electron in the combined optical and undulator fields, and (ii)

the driven, transverse wave equation for the slowly-varying optical field envelope.

Depending on the kind of analysis required, the solution to the resulting equations can I

be found analytically, solved on a small desk-top computer, or simulated on large

miin frames. Simulations continue to play an essential role in the d0sig 1 of future 3
:E .s as we,,i as iri the uridrstanding of current exp erm nts.

T (Il, i p u in r,: i rter c, is W. B. Colson, Proc. SPIE 1045,2 1,- I

I
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3 Proc. SPIE 1045, 2-9 (1989).

U
Simulations of Free Electron LasersI

IV. B. CO/Son

Berkeley Research Associates, P.O. Box 241, Berkeley, CA 94701

U
Abstract

Free electron lasers (FELs) provide a unique physical system for analysis with
computer simulations. The only physical constants needed are the electron charge and
mass, and the speed of light, in order to accurately represent many complex physical
effects. Large simulations requiring CRAY computers have successfully supported
many large FEL experimenits, but most often, the iriportant physical processes can be
simulated on small workstations.

Introduction

The free electron laser (FEL) couples the energy in a relativistic electron beam to a
co-propagating optical wave with the use of a periodic undulator magnet [1]. In the
cscillator configuration, coherent electron bunching develops on each successive pass
through the undulator. Over many passes, the optical power stored in the resonator
grows to saturation. In the amplifier configuration, coherent electron bunches develop
rapidly in the first part of the undulator followed by large growth of the optical field. Due
to the simplicity of the fundamental FEL mechanism and experimental conditions, theory
and experiment agree over the wide range of parameters explored. Instead of
describing a large comprehensive code, a few simple numerical procedures are outlined3 for small workstations. Two FELs, the oscillator at LANL [2,3,41 and the amplifer at
LLNL [5,6,7], are used as examples for simulations that can be performed on small

Scor ',pu! rs.

Electron dynamics in high-efficiency FELs

STth, Lorentz force equations determine the electron motion in the combined
:,n , ,Ir and radiqtion fields. For the helical undulator, the field is3 [B'-sIJ ( co(k0z) sin(kq),0) (1)

I
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where X, - 2= 2n' k o is the undulator period, and B is the peak field strength. The

corresponding electric and magnetic components of the radiation fields are

E =E (cosy, -siny, 0) , Y = E ( sinW, cosy, 0 ) , (2) 1
where = kz---t +, X=2Tlk =2tclco is the optica wavelength, 0 is the optical phase,

and E is the radiation field strength 3
The transverse velocity components of an electron in the fields (1) and (2) are

found by noting that the right side of the Lorentz force equation is a perfect time

derivative over one undulator period where B and E remain substantially constant. The

transverse electron velocity, co, is

0 1= - [cos(koz),sin(koz),0]+-[siy,cosy,0] (3)
Y -

where K = eB X,27tmc2 is the dimensionless undulator vector potential, A = eE J2mc2  i

is the dimenslonless optical vector potential, e = I e I is the electron charge magnitude,

rn is the electron mass, c is the speed of light, and c nc 2 is the electron energy. 3
Typically, K = 1 in most FELs. The constants of integration have been set equal to zero

indicating perfect injection into the undulator; imperfect injection is considered later.

Using (3), the electron energy change is i
dy oKAT=d 'cos(t+O) ,(4)I
cdt '

where the electron phase is =(k+ko)z-ot, and y=dy/dt. The combination of
2 2

,=1- - 3 and (3) gives the exact electron phase motion,

KA (2()co0-2 t+o)2 -2 )(2oo -o+o)cos(++0)

_ (5)
(eo)2(1 +K 2 -KA sin(C+O)+A' )

where w= k 0c. The bunching mechanism for an initially random beam arizes from the

important relation r cos(C+¢O). In order for bunching to develop, the electrons miust be i
near resonance where =0. Near resonance, the FEL frequency is o = Poy/(1-3.),

and in the relativisre limit u, >, wo. Furthermore, it can be shown that Amax - (N s IN )2 3
where Ns is the number of synchrotron oscillations of trapped electrons along the

undulator length. Typically, /I max -10 - 4 so that K >> A for even the strongest optical

fields. In high efficiency FELs where the undulator is altered to maintain resonance with
tr <pped electrons that lose significant energy to the optical wave, the untrapped

,-e strons can drift far off-resonance. Allowing that is far from resonance, but with the 3
restriction , - mo,, the electron motion is accurately described by the simpler equation

v .( m,4l=," ) !uI cos( ¢o) 16)

I
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0 0
where (.. ) = d(..)/dT, t = ctIL is the interaction time over the undulator (-C = 0 --* 1), v =
is the electron phase velocity, and I a (42 )2KA1(1+K2) is the dimensionless optical
field amplitude.

In this formulation, electrons trapped near resonance, v = 0, are described

accurately, while untrapped electrons far from resonance, v - 4rEN, are handled less
accurately. However, the untrapped electrons are expendable since they become
randomly spread in phase as well as uncoupled from the bunching interaction, as can be
seen in (6). For electrons near resonance, the bunching rate is determined by the field
strength I a I. When I a << c, the optical field is considered weak, and bunching is
imperceptible. When a >> c, the electrons bunch rapidly, and become trapped in

2closed phase-space orbits. In strong fields, I a 4nr2, the trapped electrons oscillate atU 112the dimensionless synchrotron frequency v. z I a I , and there are N. =Vs/27c

oscillations in time At = 1. Integration of (6) can be accomplished numerically on a small
computer, or analytically in some specific cases. Because (6) is slowly varying,
numerical t-steps can jump over several undulator periods. When N >> 1, so that the3 FEL efficiency is not too large, (6) simplifies even further to take the form of -the

pendulum equation.

3 The wave equation in high-efficiency FELs

In order to have a self-consistent theory, the complex, time-varying field envelope,

(E (t),0(t)), is allowed to vary slowly over an optical period (E << o)E, ,<< io). The
transverse beam current, - is the sum of all single particle currents, but an average

over sample particles, <..>, can be used if weighted by the electron density p. The
current is then T, =-ec P<V1 >, and the slowly-varying wave equation can be written as

d(Ee) =-2rtecKp<(e Iy)> (7)

dt

From the electron dynamics, the dynamic Lorentz factor is given by y - = (1-v/4tN) -Y

with the static, resonant Lorentz factor y,=(w(l+K2)/2co)1 2 . Then, in terms of the
electron phase and phase velocity, the wave equation becomes

a -- j <(1-v/47rN)c C > , (8)

where the complex dimensionless field is a = a I ', and the dimensionless c, rrent
I r~q n r; t' is;

,2 3 2j = 8.V (e: A'l) )p / yotm: (9)

I io current j determines the coupling between the electron beam and the optical wave,
; n, 3 the most important dimensionless variable describing an FEL. Without current

I or with no bunching <..> -0, there is no change in the initial optical field,

I
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a(0) =a o. When] < 1, the FEL gain is low, and whenj >> 1 the FEL gain is high. The 3
combined equations, (6) for each sample electron and (8) for the light wave, are valid for

weak fields (I a I - n), strong fields (I a I >> x), low gain (j :< n), high gain (j >> K), low

efficiency ( <Av> << 2t ), and high efficiency ( <Av> = 21cN ). A practical correction

that can be included, j -- ]F, is the "filling factor", F ="area of the electron beam"/"area

of the optical mode", describing optical mode coupling [8].

Initial conditions 1
Integration of (6) and (8) starts with an initial value for each and v sampled in the

beam, and the field ao. A large number of electrons enter the undulator randomly

spread in phase, (0). To represent the "fluid" beam, a smaller number of sample I
electrons are uniformly spread, but with a small additional random phase 8C to

characterize shot noise. if the spread in the initial phase velocities is narrow compared

to the gain spectrum bandwidth, the electron beam can be considered perfect and

represented by a single value, vo. In strong optical fields, the FEL interaction induces a

large phase-velocity spread that can make an initial spread negligible. But, when-the i
phase-velocity spread exceeds the gain spectrum bandwidth and the optical fields are
weak, the distribution of phase velocities, f (v), becomes important and can reduce the

FEL performance by degrading bunching. The random spread is determined by a

combination of the beam's energy spectrum and emittance, and several types of

distribution function shapes can occur. An example is the "exponential" distribution [9] 3
that results from an emittance dominated beam w;th no external focusing in the
undulator, 11

fe(v)=exp[(v-vo)/a
9] e 1 for vv o , fe(v)=O for v>v o  (10)

A symmetric radial spread gives the asymmetric exponential distribution where

(YO=4V y 20 2/(1+K 2 ) and 0 is the rms angle away from the z axis. A beam v,'iih

matched contributions from a spread in radial positions, F, and angles, -yO = KkoF, also

gives the exponential'distribution.

A dificult case for simulations is the combination of poor beam quality, 0e 7r, and

large current. As the phase-space area occupied by the beam increases, the shot noise I
contribution from the relatively few sample electrons can cause significant field growth,

and large values of j emphasize the error. Poor quality beams must use more sample 3
electrons for accurate results.

Single-mode phase-space simulations I
Probably the most useful tool for understanding FEL physics is the single-mode

phase-_ oace simulation [10]. Many of the features calculated in more complete 3
Ii
I
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multimode simulations can be seen in this simpler, faster case. As an example of an
FEL interaction with poor beam quality, high current, and strong fields, figure 1 shows
the final ( ,v) phase space distribution of a beam with an initial spread of 0. = 31C in an3 exponential distribution. The electron beam current isj = 103 in an initial optical field of

a o =4n. The initial phase velocity, or resonance condition, is at the value V0 =4g for

nearly optimum gain under these conditions. The sharp edge along the top of the
distribution results from the sharp edge in the initial exponential distribution at vo.With a
perfect beam and in weak fields, the gain, G (c) = I a (r) I 21a2_1, for this current would be

exponential in c and would reach G = 10 , but poor beam quality and strong fields have
reduced the final gain to G = 70. The slight oscillation in the growth rate near[ = 0.5 is
caused by the shape of the exponential distribution. The reduction of the growth rate
near c = 1 is caused by strong field saturation. The optical phase shift, AO .'2, is
significant to the interaction.I

*** FEL Phase Space Evolution ***

j=10 3  (70=17: a =41c Vo= 4 N=20

301 _7 1n I+G) 5

o -. . . .

Iv 0

"- 3
. . . . . . . . . .. . . . .. "

3- 2 0 t 1

Figure 1. A single-mode phase-space simulation.

Strong fields are identified by "over-bunching", when some electrons over-take

others complicating and diminishing coherent bunching. Because the field is strong in
figure 1, bunching is clear despite the large initial spread in phase velocity. Electrons3 are trapped and have rotated by about one synchrotron oscillation around the stable
fixed-point - ,2-o.

I
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LANL FEL oscillator simulations

In some FELS, a single mode analysis is inadequate. An important example is the
LANL FEL oscillator that first demonstrated the effects of the trapped-particle instability

11-151. To generalize the previous equations to follow multiple modes, we follow

multiple field sites along the complex wave envelope a (z) and the electron beam. The

extension to spatial modes, a -*a(z), is completely equivalent to an extension in 5
longitudinal wavenumbers, a --- a(k). All longitudinal distances are normalized to the

slippage distance, zINk -- z, so that a - a,, v - v_, -- , and - j,. The light,

trav'elinq rt sp'-cd c, x s f;in . whl-, slower elecrons slip back by z-- at U
time T. The mode spacing is Av = 2ruW where W is the number of slippage distances

used in the simulation. The site spacing Az can be made equal to the integration time

step AT, so that electrons slip back one site in the calculational window for each time
step.!

The LANL FEL is driven by short electron pulses from an RF accelerator. The

electron pulse has a length, cy = 10, that is 10 slippage distances long, with a shape of

the form j(z) =j(1-2z2I/2) for j(z) > 0, and zero otherwise; the peak current is j =10. 3
In figure 2, the current density, j(z-T) (lower-left), is shown at T = 0 (dark grey), and at

T = 1 (light grey) after slipping back by Az = 1 in the window of width W = 16. During the

simulation, a new electron pulse is injected into the undulator with N = 37 periods at the
resonant phase velocity, vo = 0. The electrons are uniformly spread with a small random

phase 5 = 104. The emittance in the experiment is large enough to reduce weak-field 3
gain, and j has been decreased to reflect that degradation. But, the strong-field
features of the simulation are not significantly altered by the beam quality, and no

spread in v is included. The shot noise contributions start a small amplitude optical

pulse at peak gain. The single-mode gain spectrum, G (v) (lower-center), is shown for

reference. In the experiment, the rebounding optical pulse is approximately

synchronized to arrive at the beginning of the undulator coincident with the series of

electron pulses from the RF accelerator [16-18). The amount of desynchronism,

d = 10- 3 here, is the displacement between the electron and optical pulses at T"= 0 each I
pass; d is normalized to the slippage distance. The resonator losses are determined by

Q = 20, so that without gain the optical power would decay as o exp(-n/Q) over n 3
passes. The optical pulse amplitude, I a (z, n) I (left-middle), evolves for n = 640 passes

until a dynamic steady-state is achieved. The final optical pulse shape, Ia (z) I (top-left),

shows a spiked structure as a result of the trapped-particle instability. The grey scale I
above shows the peak field Ia(z,n)I =210 in white, and zero field in black with one

c .n !r. 3

I
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**** FEL Pulse Evolution ****

j=10 (Yz=10 d=10 - 3 6=i0 - 4 Q=20 N=37

la(z,n)I 01 210 P(v,n) f(v,n)

I.
640

0-8 z 8 -50 v 50 -50 v 50

-8 z 8-50 V 500 n 640

Figure 2. Full pulse simulation of the LANL FEL oscillator.
The instability starts with the motion of trapped electrons in phase-space. As

substantial current is trapped by a strong optical field, and oscillates at frequency
Vs :: a I , the wave equation can drive multiple sideband frequencies around the
fundamental at vo ± vs . The field strength required to cause one synchrotron oscillation
is I a = 4T2 z 40. In stronger fields, the sidebands can mix further causing a chaotic
pulse shape and corresponding chaotic spectrum, as can be seen in figure 2.

The average power per site, I (n) = I a (z) 12 (lower-right), has increased from noiseI to strong-field saturation. The complicated optical pulse shape gives the mi!,r,.ode
power spectrum, P (v, n) (middle-center) with several sidebanos covering a spectral
width Av = 8r. The strong fields broaden the electron spectrum, f (v, n) (middleright),
and extract energy from the beam. The final pulse shape, power spectrum (top-center),
and electron spectrum (top-right) show the final chaotic state of the FEL operation. The
details of the result cannot be reproduced when there are slight changes to the initial
conditions, so that the agreement between theory and experiment should be confined to
their overall features. An important teature in the LANL FEL ;S the broad,

100/, optical spectrum caused by the trapped-particle instability [2,3,41.

3 lPeriodic "wrapped" windows

When the e ectron pulse !,j optical pulse are long compared to the slippage
h2.anc.e , in the LANL FEL, periodic boundary conditions can be imposed at the ends

I
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of the window W in order to restrict the number of modes and sites followed [13-15].
The end effects of the periodic boundary conditions are considered non-physical and
inconsequential. Figure 3 shows the results of the same simulation as in figure 2, but p
with periodic boundary conditions applied to a smaller window of width W = 4. The
simulation in figure 2 required 4h running time while that of figure 3 required only lh.
The detailed spectra and evolutions are different because a different number of modes 3
are sampled, but the most useful overall features are the same.

SFEL. Wrap EvolutionI

=10 8C=10 - 4  0=-20 N=37

la(z,n) 1 0 210 P (v,n ), I
800I

nI

-2 z 2 -63 V 63-63 V 63

0 n 800-63 v 630 n 800

Figure 3. Wrapped-window simulation of the LANL FEL oscillator. I

The simulation in figure 3 is intended to represent a small section from the middle
of the long pulse in figure 2. The current j = 10 is uniform in z, and the variables Oz and 3
d do not enter the long-pulse problem, but otherwise the simulation in figure 3 is run in
the same ,vay as figure 2. The shot noise, 8& = 10- 4 , is now essential, since without

some source of noise, every site z would evolve identically, and no spectral features
could develop. However, the resulting steady-state solution is insensitive to the details
of the noise source. The chaotic pulse shape, power spectrum, and power evolution U
P(n) all have features similar to figure 2. The peak field strength, Ia I = 210, found in
spikes is the same for both simulations. The large peak seen in the electron spectrum,

f(v, n), of figure 2, but not in figure 3, is caused by electrons near the front of the
electron pulse that do not interact with significant optical fields.

.l, FFI, amplifier simulatio ,, I
In the( FEL amplifier, a coherent input signal, sufficiently far above the noise level, I

rget'ymir thew Iongitidin,'l frequency of the optical mode. While longitudinal multimode

I
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operation may become important to some amplifier applications, it is generally less

critical than in the FEL oscillator. In a long undulator with high current, there can be

significant distortion of the transverse optical mode caused by natural diffraction and the

FEL interaction.

A coherent, freely-propagating optical wave of area nWo will spread due to natural

diffraction over the undulator length L. The dimensionless Rayleigh range,2
zo = trwo / L k, compares the characteristic spreading distance to the unduiator iength,

and should be near unity to justify ignoring diffraction effects. If zo is too large or too

small, the FEL coupling can be significantly reduced. A low energy, long wavelength

FEL terids to have a oinall Rayleigh range, zo, in a long undulator. The mode waist, w o,

cannot be increased arbitrarily to compensate, because of the off-axis undulator fields.

Therefore, an FEL design requires

y >_KN/2 (11)

so that natural diffraction does not significantly decrease the interaction strength. In the

LLNL ELF experiment [19], y=7, K =2.5 and N =30 so that the electron beam's
Lorentz factor did not satisfy (11) and a waveguide was used. The waveguide alters the

propagation speed of the light wave, and the FEL resonance condition. For the LLNL

ELF experiment where Xo = 10cm and the smallest rectangular waveguide dimension is

3cm, the waveguide shift is AvELF =-6n for the lowest-order mode. This shift is

observable, but not detrimental to maximum gain. In a single waveguide mode, the

cross-section of the mode can be used in the filling factor, F, to estimate coupling to the
mode. The electron beam size should be close to, but smaller than, the radiation cross-

section for best coupling.

An example of transverse mode distortion in free space is "optical guiding". In the

case of large current, >> 1, the transverse optical mode can be continuously distorted

by the electron beam, because of the large optical phase shift associated with the high-

current regime. This is an important practical advantage for the high-gain amplifier

configuration where natural diffraction would provide a limitation to a long undulator
length. When the FEL has large enough current for optical guiding to persist, the FEL

* interaction must continually compensate for the phase shift associated with free-space

diffraction at each step A-t. The critical current density needed for optical guiding,

J( -32 z 0  (12)

I the LLNL ELF experiment, the electron beam is small enough so that a light wave

,,...h a small Rayleigh length, zo :-- 0.1, could be matched to the beam at the beginning of

the undulator. The current density needed for effective guiding would have to exceed

K. ,. 32.10':. Eet, the ELF experiment is described by j -2.5- 10 , and significant

I
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guiding is not possible.

In both the longitudinal and transverse directions, the ELF amplifier tends to work in
a single mode, so that the simpler, phase-space simulation may capture the most
important features of the experiment. Equations (6) and (8) are valid for high j, high
power, and high efficiency as needed to describe the FEL. The fundamental gain
mechanism is still electron bunching, but the interaction is collective since all electrons
interact through the rapidly growing optical wave. In weak fields, the gain is

GE(r) = exp[1Ci2) 113,Fx]/9, after a bunching time TB z (21j)113. During the bunching time,
LB =0.05, there is no significant gain, but final gain, G > 1016, is enormous. The

weak-field optical phase shift, 0(c) = (j/2) 1/3r2, can be as much as > 3.5n for ELF, and
is a significant feature of the high-current regime. The weak-field gain spectrum
bandwidth is wider than in the low-current regime. If the gain bandwidth is defined by
the range of phase velocities over which the gain is reduced by lie, then we have

16I
Avo =4j . If the gain bandwidth is identified by the range of phase velocities over
which the exponential growth rate is reduced by 10%; then we have Avo = 2T1 /2j3

For ELF, Avo = 2j 1/3 20ic.

Saturation in the high-current regime is caused by the over-bunching of trapped
electrons in strong optical fields just as in the low-current case, but at a different field
strength. Equation (6) shows that at aj = 2(j/2) 3, the electron phases can be shifted by

ELF 4as much as A = causing the onset of saturation. For j =2.5x10 , the saturation

field, aE LF z 3507c, can be significantly larger than for the low current case, as has been
observed. The natural efficiency in the high current limit is j = (j/2) 1 3/4r.N. For ELF
with N = 30, the natural efficiency is Tj = 0.06. In the high-current, strong-field regime,

about half the electrons are bunched near = tr/2-0 so that the optical phase evolves as
o =j/a., or 0 = (j/2) v 2 again. Remarkably, the optical phase evolution in the high

current regime is roughly the same in both strong and weak optical fields.

Figure 4 shows a simulation of the ELF FEL with high current j = 2.5x1 0, an initial
field of a0 = 20, and N = 30 undulator periods. The initial electron phases are uniformly
spread, but the phase velocities are distributed according to the exponential distribution
function in (10) with o.= 15. The distribution peak is located at vo=30 for highest

efficiency. Ten thousand sample electrons are shown in their final phase space ( ,v)
orientation. The bunching and trapping of the beam inside the closed-orbit area are
clear. The electron bunch has rotated several times around the stable fixed-point

=,:.2-o(:), while the optical phase has shifted Q" through - 21. The positions of the
electrons indicate the outline of the closed-orbits that have trapped most of the beam. 3
The weak field growth-rate is reduced by : 20% by the large random spread Go. Gain in
the first third of the undulator is G 3l10 3, or G (dB) = 1 Olog(G -1 ) z35dB. The peak

a" s.turation, ( 4(j'2)' 10',  is predicted accurately, and shows the I

I
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synchrotron frequency vs = aj12 = 1 O in the oscillations of In(P ('c)/P 0). The efficiency is
5% in good agreement with the analytical estimate above. The optical phase, 0(r), shifts

3 at about half the predicted rate because of beam quality.

*** FEL Phase Space Evolution**

J=25000 ("0=15 ao=20 ve=30 N=-30

I80 l n(P/Po0)..: 12

V ~ 0

K - 4"_ -:Ai r 0____ _ .

-80 : ". ." - .

-n/2 3n/2 0 TI
Figure 4. The single-mode phase simulation of LLNL ELF amplifier.

The tapered undulator design [20,21) can increase power beyond the saturation
limit seen in figure 4. At normal saturation, the electrons lose energy and drop out of the
gain spectrum bandwidth. But, resonance can be maintained by decreasing, or
"tapering", the undulator wavelength ? along z, or the undulator field strength B along
z, or both. In weak optical fields, the electron's equation of motion in the tapered3 undulator is of the form v = & +... where 5 is the artificial acceleration. The electron
equation can include an additional constant torque due to 5 on the right side of (6) as a
representation of tne effect of tapering. In a sufficiently strong optical field, ]a > 6,

some electrons can be "trapped" in the closed orbits of the pendulum phase space
centered near the stable fixed-point " = cos-1 (-/I a I)-4. In stronger fields, a large
fraction of the electrons can be trapped and continue to lose energy to the optical field.
If 50% of the electrons are trapped, the efficiency is estimated at Ti = 8/8N.

Figure 5 shows the single-mode simulation of the tapered high-current ELF FEL.

The current is j = 2.5x1 04, initial field is a. = 20, ae = 15, and N = 30 as in figure 4. The
exponential electron distribution is position at resonance, vo = 0, for maximum efficiency
in this case. The phase acceleration, 5 = 1 00, is applied when the optical field strength
i- near saturation, 1a(c) I =a j/5, at -c 0.2. Approximately half of the ten thousand
i mrq: electrons are untrapped, and have been accelerated to Av 6:: during the

I
I



-34- U

interaction. The electrons near resonance are bunched and continue to drive the wave
after being trapped by strong the field. The final phase space positions outline the
closed-orbit region, and show how electrons "leak" out of the right side near the unstable
fixed-point. The final power P 6x106, and efficiency i = 30%, are 6 times greater than

in the untapered FEL in figure 4. Several synchrotron oscillations caused by the trapped
electrons can be seen in P (t). The optical phase, (c), changes at a different rate when 3
tapering begins. I

**FEL Phase Space Evolution**
J=25000 ao=20 vo=0 N=30

a0=15 8-=I 007C

320 P/P-1 12x104

" " I

-320

-n/2 3n/2 0 1

Figure 5. The single-mode phase simulation of LLNL ELF tapered amplifier.

The main features of these simple simulations are seen in the LLNL ELF
experiments. Like many FELs that work well, their operation is simple and can be

successfully simulated on small computers. The phase-space simulations in figures 4
and 5 took only 16m running time, but could be run accurately in 2m with fewer particles.
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8. The FEL Integral Equation Derivation

The Paladin experiment with 5 m or 15 m undulator length is described by

j,,--50 or J15, 
= 1200. In both cases j n and the FEL is in the high-current

regime. But in both cases, the electron beam quality leads to gain degradation so that

the FEL distribution function becomes important. The integration of the self-consistent

FEL equations is valid for any initial electron distribution, but simulations become

awkward when the distribution is broad in v. There can be large sources of error due m

to artificial shot noise when the number of particles included in the simulation is too

small. With a moderate current j and moderately broad spread in f(v), there can be

as much as 100% error in the calculated gain. The integral equation was developed

as a better approach to studying the effects of beam quality. Reference to individual

electrons does not occur in the integral equation so that broad distribution functions

can be treated and examined without the numerical problems of artificial shot noise.

The gain degradation due to beam quality is most important when the optical fields are

weak, so that the FEL integral equation can be a useful tool. The derivation of the

integral equation is presented here. Some of the simple properties of the integral

equation are presented.

The FEL equations (6) and (9) can be simplified for the case of weak fields, and

no taper, 6 = 0. In weak fields, there would normally be low efficiency so that the

factor - v/47rN are negligible compared to unity, and the equations return to their form

for low efficiency FELs. For weak optical fields, la I << , the electron phase can be

expanded in powers of the field, = o + v, + (1) + .... where the initial electron

phase is Co and the initial eluctron phase velocity is v0 . The result to lowest order is

oc
(1) = lal cos( c(0) + a ) = IaI cos( o + + q ) (18 )

a - < e - =- ] ( - i(1) = ij < e-' >

The phase average over all the random initial electron phases, < e > = 0, has been

used. Expressed as integrals in complex form, the equations can be solved as

d 2 a(T"') e' :" ' + a'(-. (19)

a(-) -a ij3drc ., )() j I
, the Wrtial fl "Id is a(0) 1. a with ((0) - 0. Substituting th(e chnge in the icctron 3

I
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I phase ((1) into the wave equation gives the integral equation
a ' fe a(t")+e e a'(,'")> (20)

Use < e e > o 1 and < e >o= 0 to get

a(') = a0 + J f, d'r" dt" d"'." < eivo" a(-.)>v , (21)2

where <">v, is a possible average over a ve-distribution.

To begin examining the integral equation, consider a perfect beam with no vo-

distribution, and at resonance vo = 0. The leaves the case of either high or low gain at

resonance with a perfect beam. The integral equation becomes

a(-u) =a 0 + A'' d -C d' dc... a (r ... (22)2

and determines the evolution of the complex field a(t) in terms of the dimensionless

current density j. By taking successive derivatives, the integral equation can be

written as a differential equation,

a(u) =- 2 a(u) (23)

Using the form a = aoe a , the differential equation has the form, 3 = ij/2. The roots

3 of this cubic equation are

(X, = (j/2)1/3 e i rc 4n 3 )/6  n 1,2,3 roots (24)

Ihe specific roots give the complex growth rates

C11 = (j/2)1/3 e , 02 = -(j/2)3 e iX3 c 3  -i(jl2)"3  (25)

The general field is described by

3
a(z) t an (26)

v,,ht re we know the initial field values
0 00a(O)zz ao a(),(0)=0 (27)

Suhiitinr the general field into the initial field values, gives (he three equations,

f, 1 +, . a; ,, a? + ,, a3 = 0 Cy. 2 aI + ,, a2  + X 2a3 = 0 . (28)I
I
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Solving for the fields gives I

a, o - 2 X3aa c(xa o -3a 2a0  (29)a (Y 1 ( -a2)((X 1--a3) , 2= (OC2--a1)(oX2--3) , a 3 - a 1)((X3-CC2)

Using the complex growth rates gives aI = a2 = a 3 = a013, and the complex field

evolution is

a°() = a 0 [ e( j 2)1'3 (i+'- )V2 + e( j /2)' r (i - - )2 + e-i(j12)"1i] (30)a( 3 = - + I-

If the current is large i :2. 7, and the gain is high, the field grows exponentially, I
ao e(j/2)",3g/2 ei(j2),-Uj2 ( 1a (r) - e-e(31

The amplitude and phase of the field evolve as i

la(,)l =a e(iI2),,N 2 0(c) = (j12) 3 /2 (32) 3
3

Note that if the single exponential root was used alone with the initial condition

a(0) = ao, the resulting field would be incorrect. The initial field divides the field into
three solutior.s at c << 1 regardless of high or low gain. When there is high gain, the
fast growing root emerges but has only 1/3 the initial field strength. 3

If z << 1 near the beginning of the undulator, the field can be expanded to show

that I
a (r) = ao ( 1 + ij-3 /12+...) (33)

There is no change in the field until some bunching occurs. The bunching time is

2/j1/3

The FEL gain is defined as G = (la 12-a2)/a 2 . Substituting the field into the gain

expression, the gain is

G(T) - 1 + r3t+1+er(31 3)t/2+1+e-r'3tc+u r(3i-" 3)i/2 +e r(-314 N[3)t/2+e r(-3t -v3)c12+! 1  (34)
S,r,,r r :(j,'29- Simplifying the expression gives the gain on resonance for a

9:rfect 2cosh(r.-) -- (35)

G(r)- -1,2cs rE 44cos(r3t!2) cosh(r',13"2) -6 (5

I
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I In th- limit of high current j 3> 7, r = (j/2) 13 3 1, the exponential gain becomes

G(Ir) er43 e(jf2)' &  (36)

9 9

The final gain at = 1 is

G =e(ii2)' (7

9

The dimensionless e-folding time is "e = 1/(j/2)1/43 - , and G = exp( r/'re)/9.

Now consider a perfect beam that is not at resonance, vo : 0. The integral

equation (21) then becomes

a(l) = ao0 + ijU f' dr' o d-r" f'd" eivo(' a (T "') (38)

After taking a single derivative and multiplying through by evO , the integral equation is

0T 0

~e v° a (r) =Ajf d" de d e'v°" a (C) (39)

I2 o
Define the variable b = eiVo a, so that b = e a + ivob. In terms of b, the integral

equation becomes

b -v OT, r dt" b (Ct) (40)
2 o

After taking successive derivatives, the integral equation is a cubic differential

equation,

0 -iv i  b (41)2

To find the roots use the form b = a0 e . The roots are determined by the-cubic

equation,

i 3 - iv0 X2 - ij/2 = 0 (42)

The form of the solutions of the cubic equation are known and can be expressed as

I ( 1=s 1 +s 2 + iv o/3 ,

I 2 = -(S I + S 2 )/2 + iVo/3 + i3(S, - S2)12 (43)

(Y3 = -(S 1 + S2)/2 + ivo/3 - iN (sl - S2)12I
I
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where u = ij/4-(vo/3)31, q = (v/3)2, S1 = (u+(q 3+u2)1/2) 1/3 S2 = (u-(q3 +u2)1r2)1'3 . This I

is an exact solution, but complicated.

In the limit of high current j :- 7, the cubic solution can be simplified. We get I
u z ij/4 , q = (Vo/3) 2 , s, = (2u)113 , and s 2 

= q(-112u) 113  (44)

Thp rootq thpn hbcome

(a1  (2u)1 3 + q(-112u) 113 + ive/3

cX2 (-1+i-3)(2u) 113I2 + (-1-i'3) q(-i/2u)11312 + ivr/3 (45)

(X3 (-1-i-3l)(2u)'1 3/2 + (-l+i',-) q(-112u)" 3/2 + ivo/3 I
In terms of r = (j/2)1/3, use 2u = ir3 to write

al = i113( r + qir ) + iq-q

a 2 = i13[(-1 +i'3)r/2 + (-1-i [3)(q/2r)] + i4-q (46)

c3 = i113(-1-i-3)r/2 + (-1+iVr3)(q/2r)] + -q

Using the root i 113 
=-i, then I

aC1 =0+.... a2  -(r - q/r)/2 a3 -N-3(r - q/r)/2 (47)

The field then grows as

a o eri( 1 - ( Vol3r ))/2 (48) I
3

and the gain is _

1(vo)  e~rr e-V 3'Ir er3r ( 1 -V2134-r (49)

The gain expressed here is symmetric about resonance, and drops off at a value of
the phase velocity Av z 2(3,3)1/2(j12)16= 4.221/6 away from resonance. As an
example, consider j = 100, then Av = 27t, and is broader than the normal gain
spectrum bandwidth, Av z 7. For j = 104, then Av - 47r, and is significantly broader
than the low-current gain bandwidth. I

In order to recover the usual low gain formula, consider a perfect beam and small
current j. The field growth is small for low j, and the field a('r'") = ao can be removed
from the triple integral. It does not have to be followed self-consistently. The integral

I'
I
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U equation then becomes

a = ao + ao J de' dt'fo' dT" " vo(T -  (50)

The integral can now be performed directly. The first integral gives

I a-a° .. IJ d e' '-t [ ] (51)

I After completing the second and third integral, the result is

Aa 2 3 [2-ivo--(2+ivo) e -ivo , (52)

a0  2v0
-where the change in the field is Aa = a-ao. The gain in the low-current case is given

by G = 2Aa/a o, and is

G = 2Aa/ao = j [ 2 - 2cos(vot) - (voc) sin(voc)] / vo 3 (53)

This is the usual low-current gain equation that can be derived without the use of the

integral equation. The change in the optical phase is

A = j [ 2sin(vo'u) - (v 0t) ( 1 + cos(v 0r))] / 2vo3  (54)

and is also in agreement with the usual low-current result.

9. Gain Degradation in Low Gain FELs

The FEL oscillator typically works in the low current regime where the gain per

pass is small. In this case, the integral equation can be simplified by removing the

self-consistent field a(q) from the integral. The effect of distributions can be then

evaluated with a new analytical method. The integral equation is a triple integral in it's

original form, but since it is an interated integral, it can be written as a double integral,

a~) a0 + iov,(s-q)
a(r)= a°0+ -U fods fodq< e- > , (s-q)a(q), (55)

where <..>v, is an average over the electron beam's distribution of phase velocities vi .

I That is

<..*>V f dv, f (vi)( ...) with J dv, f (vi) = 1

The normalized distribution function f (vi) can be written in the form f (v,-vo) where allI
I
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phase velocities are referenced to some value v. The distribution function need not

be center about vo, but is just referenced to that phase velocity. Define A = vi-vo so 3
that !he integral equation can be written as

a() a0 + A fo ds J0 dq <e > e-ivo(s-q) (s-q)a(q) (56) 3
where < ...> = dA f (A)(...), and f (A) = f (vi-vo). It is best to use Vo as a reference

phase velocity for the perfect electron trajectory through the undulator. I
In the limit of low current, j S n, the field a(q) doesn't change significantly, so

that a(q) = ao + ..... Then the integral equation can be written as

a ( )-a i2 ds Jo dq < e -iA(s - q) >, s e-i q (s-q) (57)

Inside the integral, the factor (s-q) can be replaced with an operation on the

exponential factor,

( s-q )e-i°sq iao e-i ° s q  (58)I

With the substitution above, the integrand can be simplified, and the integral equation

becomes

a(c)-ao -i q  -ivoq
I a d < e >, e(59)

ao 2 vO f o A I
For further development, if we interpret the exponential e- q as a power series

expansion, -

e-q (-iA) (60)

then the integrand contains a factor that can be interpreted as

(-iq)n e-ivoq = an e -ivoq (61) 3
With this substitution, the average over the beam distribution no longer depends on

time, but contains a derivative. The integral equation can then be written as

a(-r)-aa -- J'< exp(AaVo) >A a"o fo ds ro dq eivoq  (62)

a0  2 0 OI

The more complicated time integral containing the distribution function has been

I
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I replaced by a simple time integral, but with an infinite sum of derivatives to be
executed for an exact expression. The simple time integral can be evaluated,

fo ds fo dq e-Vq v 2  2  (63)I d dq ~ivo~ c -- 1-cos(vot)+i (sin(vot)-vot) (3

Jo Jo
I and the complex integra! equation becomes

a (r)a 0 1-ivo-r-e-NO°Ca( - - < exp(A),,>) > _A _o 1 (64)

ao 2 Vo2

i The field evolution a(r) is now determined by an explicit expression, but depending on

the complexity of the distribution function, an infinite series of derivatives is requires.
The value of the form of the integral equation is than the derivatives can be taken to
successively higher order in the spread A. The relation between the successive

* derivatives and the distribution function is

< exp(Aa,)o) >, = dA f (A) exp( Aa,)o ) (65)

As an example, consider the normal, or Gaussian, distribution function.

f (A) = e 2/2 (66)

where cYG is the spread in the distribution. Then, the function containing successive

derivatives is

<exp(Aa)vo) >A = exp((YG -o/2) (67)

For the exponential distribution function is another example that results from a

symmetric angular spread in the beam. The exponential distribution is

f(A)= e for A<0 , (68)

where Go is the spread in the exponential distribution. In this case, the resulting
I derivatives are expressed as

exp(A(GO1 +aV) o 1< exp(M, 0o) >A = (l69)) + r

I
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Combining the two distributions, in the integral equation gives I

a()-a o _ exp((2 2/2) 1-ivoc-e iV ]( 0ao _ _L l e a vo 2  (70)

This is closed form solution for the complex field evolution of the radiation field, a(r). 3
It is valid to all orders in (YG and a8 , but assumes weak optical fields and low gain.

When there is no spread due to beam quality, the expression is less complicated, and 3
contains only a single derivative of a simple complex function.

The gain in the low-current limit with .'eak fields is G = 2Re a(')Iao, and is

G exp-a[ j [2 sin (v,/2) ](71)
The factor on the right is recognized as the derivative of the spontaneous emission

lineshape. The usual relationship between the gain and the spontaneous lineshape,

the Madey theorem, is generalized here to include the detrimental effects of beam

quality.

After accepting this relationship between the lineshape and the FEL gain, we can

introduce another functional form for the spontaneous spectrum. In a real experiment, I
the electron trajectories are not perfect and most often lead to some distortions to the
idealized lineshape. Consider a Gaussian lineshape instead of the sinusoidal "sirc"

shape above:

sin2(v/2) -sinc 2(v/2ir) - e (72) I
(vo/2)2

For comparison of the two lineshapes, note that both have the value unity at Vo = 0.

Furthermore, as vo -- + -, both lineshapes go to zero. The full-width-half-maximum

(FWHM) of the sinc shape is Avo = 5.566, while the FWHM of the Gaussian shape is

Avo = 5.903. The gain is proportional to the slope of the lineshape so that
G - 0), e -v° /4' = -Vo e -v,/"I/2n (73)

2 
2

and the peak of the gain spectrum is given by o 0. This is determined by

),G )oe 4 = (Vo/27t) 2 -  1/2t e- ° 4  (74)

I
I
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I So, the gain from the Gaussian lineshape has a peak and minimum at
Vo = ±4-2-- ± 2.51, whereas the gain from the sinc lineshape has a peak and

I minimum at 0= 2.6. For aG, = 0, the gain expression for the Gaussian

lineshape is

1 ~ ~~G(v0 ) a e-~4 = .. e -I4t(75)
2 4n

The peak gain at 0o = 4 is G = j22--ie = 0.12j, whereas the sinc lineshape gives

G = 0.135j. In all, the Gaussian representation works well.

With beam quality included, the gain expression can be expanded to evaluate the

lowest order changes to the gain using the Gaussian lineshape. Expanding the gain

* depression operator gives

exp((y2a2o/2)ex1 + 2e/o = 1 - Ceavo + ((Y2 + Os2 /2) a2o + (76)

I1 + OVO

The lowest order terms altering the FEL gain are then

G = - a 2 + (0 2  + ... (77)
2 V0  0 VO 0  + G12 ) vo ] e ... (7

Evaluating the derivatives gives

G = [vo/(2n) + oe (Vo-2iT)/(2t) 2 + (C2 + a2/2)vo(vo2-6c)/(2r) 3 ] e -vo' (78)

Near resonance the gain above can be expanded. The result near Ivol = 0 is
Go - [vo - a - 3o( 2 +2 /2)/2n + .... ] (79)

47c

If v o 0, the gain no longer goes to zero, as in the case of a perfect beam, but

G -- - jce/4 t. The slope of the gain spectrum at Vo = 0 is

G O Z- [ 1 - 3(y 2 + 0 /2)/27 +....] (80)

As either 0 G or 0o increase, the slope decreases indicating broader spectrum.

At peak gain, vo = -V2ic, the gain may be expanded to find the changes due to

beam quality. Let vo = r + x, where x << n. Then, the gain spectrum becomes

G 2n =(J[+cx - (n 2 q o 2/2) . (81)

I 2 " ~

I
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The first term just gives the peak gain at vo = - for a perfect beam. The second n

term shows there is a positive slope to the gain spectrum at vo = 47 when there is an

angular spread. This indicates that the actual peak moves to the right when 00

increases. The last term term decreases the value of the gain at vo = F7 when either

the angular spread ag or energy spread OG increases.

10. SPIE FEL Review Paper

During the contracting period, Dr. Brian Newnam (LANL) put together a group of

authors to write a series of papers reviewing the status of FEL technology. I was

asked to provide a review of FEL theory. The resulting publication reference is W. B.

Colson, "Fundamental Free Electron Laser Theory and New Principles for Advanced

Devices", Free Electron Lasers: Critical Review of Technology, B. E. Newnan'. editor,

Proc. SPIE 738, 2-27 (1988).

The paper tries to establish that the fundamentals of FEL theory are now well-

established and can provide a sophisticated description of experiments over a wide

range of parameters. While new technology is being developed for systems working

from 1mm to 10nm wavelengths, the theory remains the same. The paper has 139

cited references. The topics covered the FEL electron dynamics, and the FEL wave

equation. Dimensionless variables are introduced to examine the electron phase-

space evolution. The electron trajectories through the undulator are derived with the

natural undulator focusing causing betatron motion. The study of radiation begins with

the Lienard-Wiechert optical fields, spontaneous emission, and the coupling to higher

harmonics. The collective high gain regime and gain degradation due to electron

beam quality are explored using the integral equation. The relatively minor role of

Coulomb forces is demonstrated. The effects of saturation in strong optical fields are

derived. Alternative undulator designs like the tapered undulator and the FEL klystron

are described. More sophisticated phenomena involving multiple optical modes show

the FEL coherence development, and more general longitudinal multimode theory.

The multimode theory is then used to describe the short pulse evolution in the FEL,

and the trapped particle instability. In the transverse dimension, diffraction is included

in a general formalism. The electron dynamics in a Gaussian optical mode are

derived and the simple physics of optical self-guiding are studied.

I
I
I
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I Fundamental free electron laser theory and new principles for advanced devices

W. B. Colson

SBerkeley Research Associates, P.O. Box 241, Berkeley, CA 94701

Abstract

The fundamentals of free electron laser theory are now well-established and can provide a sophisticated description ofI experiments over a wide range of parameters. While new technology is being developed for systems working from 1mm to
10nm wavelengths, the theory remains the same.

Introduction

The free electron laser (FEL) uses a beam of relativistic electrons passing through a long, transverse, periodic magnetic
field to amplify a co-propagating optical wave. The first description of the short-wavelength FEL configuration in 1971 [1,2]
was followed by successful experiments in 1976 and 1977 [3,4] at Stanford University. While closely related to earlierI long-wavelength radiation mechanisms using free electron beams and periodic undulators [5,6), the present FEL has several
important advantages over competitive sources. There are now many FEL experiments that have explored a wide range of
physical parameters and system configurations. Collections of papers [7-31] and specific review articles [32-38] provide a
good overview of the development of the experiments and theory. Several theoretical approaches describe the FEL with the
first analyses using quantum concepts [1], and quantum electrodynamics [39,401. Later, classical methods were shown to be
accurate and complete (41-46]. The quasi-Bioch equations have enhanced the laser physics perspective [471, while plasma
dispersion relations [48,49] and computer simulations [50,51] have emphasized the role of collective effects.

Maxwell's wave equation driven by a beam of single-particle electron currents provides a clear, intuitive description of
both the electron and wave dynamics [43,52,53]. Most FEL theoretical work now uses this approach. Theory and
experiment have been tested over a wide range of parameters and show excellent agreement. The success of the theory is
largely due to the simplicity of the fundamental FEL mechanism and experimental conditions. In the interaction volume,
there are only free electrons, a static magnetic field, and light. Furthermore, the laser's long-range coherence means that only
a modest number of modes are needed for an accurate representation. No material constants, or empirical data are used in
the theory; classical results depend only on the electron charge, mass, and the speed of light. In this chapter, a simple
description of the electron dynamics and the slowly-varying wave equation is systematically generalized to develop a "ore
detailed, comprehensive theory.

In the FEL oscillator configuration resonator mirrors are positioned beyond the ends of the undulator to store short
wavelength radiation. See Figure 1. The optical power builds up from spontaneous emission noise over many repeatedI passes of the light through the resonator. Gain-per pass, or amplification, only occurs when the light and electrons are
traveling in the same direction. In the amplifier configuration, the resonator mirrors are not used for optical feedback so that
high gain in a single pass is desirable. The electron beam current is typically larger than in the oscillator case so that
significant energy can be converted to radiation at the end of the undulator.

E_.EE TRON BH

RESONTOR IRROR

Figure 1. FEL oscillator schematic.

iim'i odtor ar)\, a p,riodic, transverse, magnetic field that slightly deflects electrons from side-to-side as they
tr.'.c:l alon, the optiral mo( axis. Thle undulator extends over an interaction length L with wavelength X0 in the range of

toru to 10icm. [11,- pak mrinctic (Ield strength B in a reriod is from 2kG to 5kG, and the length of the undulator can extend
1(Ir . tiwt. r Itlt [ 0 of meters. The number of periods in the undulator N is nominally around I0), but could

t. .. , P ,,r ' t , ih a P ). lw ci eqerey of the electrons pnc 2 entering the undulator can be mildly r ativistic
)" 4 It r I11 . 1 !t r1nHIr , rofl about I Me V up to a tew (;cV with pti eak currcnts from le, t mn IA up to
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several kA in a beam that is typically from lmm to lcm in diameter. Consider a typical current and energy, say I = IOOA
and ymc = 50MeV; the FEL x)wer source is then an impressive 5GW. Since the power source is inherently large, even with
small efficiency, the fraction of electron beam energy converted to radiation, can result in a powerful laser.

For a relativistic electron in a weak indulator, the optical wavelength X is given by

This simple relationship between the electron energy, the undulator, and the optical wavelength shows two of the most
important attributes of the FEL: continuous tunability and design flexibility. The FEL can be designed to work in new
wavelength ranges where there are now no powerful sources of light- New and important regions of the electromagnetic
spectrun where FELs can operate are 10 3im -- 201im and 200nm -* 20nm. The design flexibility of the undulator is
another attribute of the FEL. Not only can the undulator wavelength, field strength, and polarization be selected to suit a
particular application, but the properties of the undulator can be changed along its length to attain specific interaction 3
qualities. In the tapered undulator operating at high power, the electrons lose energy and fall out of resonance with the light
as shown in (1). In order to compensate, the undulator wavelength X0 can be decreased to maintain resonance, extend the
interaction over a longer undulator length, and improve efficiency. FELs can be made in a variety of configurations with
different electron beam sources. The different configurations present many varied theoretical problems.

FEL electron dynamics
In order to describe the FEL electron dynamics, the classical Lorentz force equations are solved for an electron in the I

undulator with a superimposed electromagnetic wave. Circular polarization is used to simplify the mathematics of the

analysis. The helical undulator field is represented by

ff = ( B , By, B, ) = B ( cos( koz ), sin( koz ), 0 ) (2)

The radiation signal with the polarization that couples best to this undulator has the transverse electric and magnetic fields

= E ( cos(kz -ot +4), -sin(kz -ot ,),0 ), B= E ( sin(kz -or +0), cos(kz--Wt +4),0). (3)

The optical wave is traveling along the z axis with wavelength X = 2nr/k = 21c o, field strength E, and phase 4. In normal I
FEL operation, the predominant radiation in the undulator will have a narrow distribution of frequencies and angles as in (3).

The Lorentz force equations of motion are solved for one electron in the presence of the fields (2) and (3). The
transverse velocity components 0, = (v ,vy .0)lc may be integrated trivially over an undulator period by noting that the force I
is a perfect time derivative. The result is

Y 0, =  K ( cos(koz), sin(k oZ), 0 ) + K, ( sin(kz -wo + ), cos(kz-rt+) 0 )(4)

where K = eB ko/27cmcj B = B is the rms undulator field strength, ko = 2n/ko, K, = eE XW2nmc 2 is the dimensionless optical 3
vector potential, and E = E is the rms optical field. If the undulator and light were linearly polarized, B = B /2 and
E = E 142. The constants of integration have been set equal to zero for now so that the orbits are perfect sinusoids; this is the
condition of perfect injection of an elecuon into the FEL. Substitute 01 above into the fourth component of the Lorentz force
to describe the change in the electron energy

KK, o)
" t) - cos[ (k +k0)z(t)-em4 1 (5)

Y I
where y d7/d. The phase (k +ko)z (t) - 4t-+0 determines whether an electron's energy increases or decreases in time. As
the electron energy changes, the z velocity is found by substituting fj into the electron energy Y2= 1 - 2. This gives

S + K 2 -2KKsin[ (k+ko)z(t)-wt+P+KS

y2(t)

TIhe nerv- ,; z velocity equations (5) and (6) with 3,(t)= v,(t)/c are sufficient to solve for the electron motion.
Re'ferencet to ) Ut can he reMoved to describe the electron motion in terms of parallel components only.I

KK, (1 -[ )r( )) ( k c~c + o ( 1 -[3. (t)) ) cosr (k ±k1,)z (t) ) +c 0

I K - 2KK, sin[ (k +-kn)z(-- ()-(4! I + I,
I

){th-r th.,, m l , I':f t myrlo,. nt {, no otiher a.ssumptions; ha.ve, bec-,i ma;.de, anld (7) is exnct. The consc(Itici-cc,; of

Irtlfw'r:,c If:; - tf, rl ,ill 1,- (it lt', a ro L[<r. +T+hc :;s lof lorcmi. h( rcc c~ptl [ions' ha1:g no(w boen reduced to a singjle 11(1n

I' i -, o"f. t i! I[I , 1: ! , l i i:d c4 i(u )rl in 1 1. W ith ',()III o .add itloriml 1finform Atior, a III[ i ch It il, X r k'[ f()rInl ;m 1 -l
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In a typical FEL undulator K - I. Then, (6) shows that only relativistic electrons, y >> 1, can travel along the whole
axis of the undulator; less energetic electrons would be turned around in the first undulator period. The maximum value of
K, is at saturation where electrons can be trapped by strong optical fields and execute synchrotron oscillations:
K-" -Ns /N 2 where Ns is the number of synchrotron oscillations along the undulator. T, pically, K ma" S 10 -

4, so thatU K >> K, even in the strongest possible optical fields. From (7) we see that the changes in the electron's relativistic z velocity
com;'onent are small. The unperturbed motion is z(t)= zo+oct where 0 = (1-(l+K2 )/y2)i = 1-(l+K 2)/2Ty2. The most
sig, :ant optical feedback occurs when the electron phase (k+ko)z(t)- ot evolves slowly. This occurs when
N = k 1(k +ko) making the undulator and optical forces resonant. The radiation wavelength determined by the resonanceU condition is k = XO(1-P3)/3o z XO(l+K2 ) 2 y as in (1).

In order to solve for z (t) with these simplifying conditions assume that N >> I and y >> 1. Then, (7) takes the form of
the simple pendulum equation,

000

where~~~ (=)/t th diesols tim is~=~ cos(C+ )) (8)
where ( .= d(..)/dT, the dimensionless time is x = ct /L, the electron phase is C = (k +ko)z -ot, the electron phase velocity
is v = L [(k +ko)p3-k ], and the dimensionless optical field is a = Ia lei* with Ia I =(4rN)2KK,/(I+K2) = 4xNeKLE ty 2mc .

The exact solutions are incomplete elliptic integrals of the first kind; however, it is fruitful to derive physical results from (8)
directly. The important feature of (5)-(6), (7), or (8) is that the equations have been made slowly varying over an undulator
period. Further integration can be accomplished numerically on a small computer, or analytically with some specific
assumptions. The integration steps can jump over one or a few undulator periods, and need not integrate the motion withinE each undulator wavelength as would be needed in (4). Along the whole length of the undulator x = 0 -- 1, the electron phase
and phase velocity ( C, v ) can change significantly in strong optical fields when Ia I ! t. In the high gain limit, the field
amplitude I a I and phase 0 change significantly along the undulator, but not within an undulator period. The pendulum
equation (8) is valid in both weak and strong optical fields with high or low gain, and has been used to solve many FEL
problems [54-61]. In high efficiency FELs [62], the energy change of the electrons is large enough so that many authors
[63-67] use the more accurate equations (5) and (6) with y >> 1.

The FEL wave equation

It is important that both the electron and optical equations vary slowly. Near resonance an electron passing through
one wavelength of the undulator has approximately one wavelength of light pass over it. The optical field amplitude and
phase in that wavelength must also vary slowly so that resonance can be maintained. To describe the evolution of the
complex optical field, we use the transverse wave equation with a source current J4.. Insert the fields (3) into the wave
equation, and use E << oE and << o4 to drop all second derivatives and terms with two derivatives. Projecting the wave
equation with only single derivatives onto the two unit vectors, el and e2, we have

E = -2tJ? 1F, , and Ed =2ti?" 2 02(9)

I where E- = (cosTP, - sinT',0), E2 = (sinT,cosP,0), and T = kz-ut+4.
The current from a single electron is = - ec j5() i - /) where e is the trajectory of the i th electron. Using (4)

with K, << K, the current determined by the transverse motion in the undulator and the electron phase becomes

- eKc eKc
E cos(+,) 8(3) (r- )') and Ji i" 2 =  sin( +4) 5( ) (r - ) . (10)

Y
The total electron current is the sum over all single electron currents. Since the left-hand side of the wave equation changes
slowly over several optical wavelengths, it can only respond to an average current in a small volume element a few optical
waveleagths long. The electron pulse shape from any accelerator is much longer than this volume element, and is not

distorted by the microscopic bunching of electrons on the optical wavelength scale. The electron density p remains fixed on
a macroscopic scale, and the wave equation can be expressed as [43]

E =-21ceKcp < cos((+4)/y> . and E 4=2tneKcp < sin((+-i)/y> (II)

where <..> represents an average over sample electrons in the beam weighted by the particle density p. We chose to label
electrons by their initial conditions v(0) = v0 and (,(0) = l. So many electrons (- 10g ) are spread randomly over the initial
phases o-(k+ko)z0 - kzo that the current looks uniformly spread, and the averages <..> are initially zero. When the
interaction starts, the bunching of phases due to optical feedback gives non-zero averages, and the field evolves. When

> 1 and y >> 1, as in the pendulum equation, the wave equation can be put into the simple form f68]

-- < e - r r > (12)
whrc- the dimensionless electron current density is j 8N (e itKL) 2p/y 3rC 2. The pendulum and wave equation together, (8)

elmt ":111d i re . or stromng opticd fields with either high or low gain. In a high efficiency VTI, - here the changes
in Ih, ,I-'tron : iw O w (11) combined with is io-t accurate-
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Dimensionless variables
It is desirable to find dimensionless variables to summarize combinations of physical variables ant reduce the

complexity of the notation. More importantly, dlimensionless variables can give insight into the physical processes involved
beforc any calculation begins. The starting point is the electron phase = (k +kO)z(t)-wt . Since k = o/c and k 0 are fixed by
the experimental design, ( follows changes in the electron's longitudinal coordinate z (t). As seen in (7) or (8), the electron
motion is periodic ir '. with the corresponding physical "bunching length" along the beam given by XJ(I+,'jX.) z for -Y >> . I
The optical phase ¢ i. followed separately from ( so that depends only on the electron dynamics.

The dimensionless time along the undulator is t so that the evolutimn of all quantites is over -r = 0-- 1. In the
pendulum equation (8), the electron phase and phase velocity v are coupled by the dimensionless optical field strength I a I I
which determines the rate of bunching along the undulator. If la I >> 7t, the optical field is strong and bunching occurs
quickly: perhaps before the end of the undulator causing saturation. If la I < it, the optical field is weak. The wave
equation (12) drives the complex field a = Ia le'O in proportion to the electron phase average < e - '  > with the coupling
given by dimensionless current density j. It will be shown later that if j < 1, the gain is low, and ifj >> I, the gain is high.

Briefly described in Table I are some of the relativistic (y > 5) FEL experiments. The radius of the optical mode wo is
used in the estimate of j as will be explained later. For most experiments, the optical power and electron-beam efficiency at
saturation can be estimated from the data shown using expressions presented later. The last eight experiments are on-going,
or planned for the future.

Table 1. Free Electron Lasers

FEL I y -N o K k j Comments I
F (Amps) I (cm) (;_tm) (cm) I
[3] Stanford '76 0.07 48 160 3.2 0.72 11 0.3 0.2 First A,RF,H
[4] Stanford '77 2.6 86 160 3.2 0.72 3.4 0.3 6 First O,RF,H
[69] Stanford '80 1.3 85 160 3.3 0.71 3.4 0.14 3.6 O,RF,H
[70] LANL '82 20 40 37 2.7 0.55 11 0.16 1.8 ARFL,8= IOit
[71] MSNW/Boeing '83 3 38 91 2.5 0.44 11 0.16 2.8 AL,5=33nt
[72] TRW/EG&G '83 10 50 75 3.6 0.63 11 0.17 1.6 ARF,L
[73] LANL '84 40 40 37 2.7 0.54 11 0.15 3.6 O,RF,L
[74] TRW/Stanford '84 2.5 130 153 3.6 0.97 1.6 0.1 3.4 O,RF,L,8=4nt
[75] Orsay ACO '84 0.03 326 17 7.8 1.2 0.65 0.03 0.0005 A,SR,L,D=100
[76] Novosibirsk '84 7 686 22 6.9 2.7 0.62 0.03 0.06 A,SRL,D =280
[77] Frascati ENEA '85 2.4 40 50 2.4 4 0.35 11 0.1 0.14 O,M,L
[78] Orsay ACO '85 0.2 432 17 7.8 2 0.63 0.03 0.004 O,SR,LD=100
[79] UCSB '85 1.25 6.8 160 3.6 0.11 400 1 0.35 O,V,L
[80] INFN LELA '85 0.018 1224 20 12 3.5 0.51 0.04 0.00006 A,SRJL
[81] LLNL ELF '85 500 V7.5 30 9.8 2.8 8700 1.5 9000 AILLI
[82] LANL '86 130 40 37 2.7 0.56 11 0.14 53 ORF,L,&=18It
[831 Stanford Mark III '86 20 87 47 2.3 1.5 3.1 0.07 3.2 O,RFL
[84] LLNL ELF '86 850 6.9 30 9.8 2.5 8700 1.5 14100 A,IL,L
[85] LLNL ELF Tapered '86 850 6.9 30 9.8 2.4 8700 1.5 14400 AJL,L,5=-5Oit
[86] LLNL ELF '87 1000 7.8 40 9.8 1.1 2000 1.5 7200 A,IL,L
[87] BoeinglSpectra '87 100 223 229 2.2 1.3 0.5 0.06 687 O.RFL,&=92n
[881 Bell Labs 5 24 50 20 0.93 240 2 2 O,M,H
89J BNI 22 588 39 6.5 2.3 0.6 0.07 0.25 ASR,L 1

H[O)] United Kingdom 10 118 76 6.5 1.9 11 0.3 8.9 ORF,L
[91I FANI. XUV 100 1 400 750 1.6 0.79 0.08 1.6 414 O,RFL I

S21 Stanf rl XI * V i270 19)58 422 6.4 1-6 0.03 0.06 7 I O,SR,L
* N[ . ___ 363 130 2.8 1 0.23 0.04 1 0.6 OML

1,-1 F. " ,!, x 1470 70 2.3 2.06 00 1360 SRSRA.L
Alf 1) [ (1 5 I .RF.I

I' 7 I 1 1I. Ir n vrl I 111.t, ni; clorator, NI - l ni troi rccelerj AC.; SR tClctron Stora'c Rin:.
V 'in I" ' I : t tI r, : 2 . . ' ,'rn r, 11 I nwl,! I fndilaaltr f'dirwition, 1. -Linear I ndulator lolari,.i.
1 , , I I l.ir 1 .i. ) It _ . v rn t ni : 1 .0 l-i.... . - 1t . AI, mphtP r.() - .1 . Cilllt r
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i'lectron phase-space evolution
c'olution of ,,rnple cl etrons in one section of the periodic (',,v) phasc-space has proven useful in understnding

+lay f-t prohiclse. In weak iClds with low current a I and j are both small), (8) and (12) can be easily solved self-
i,'tcntl 'to oht.19 1551

v(c) = ,+ v- Isin( + v°) -sin( ) + ". t(-) - + Vot - 2 t Cos(o + v°t) - cos(& ) 4-v°tsin("I) ±." (13)

i jao
I a =a 0+ - ( 2cos(\o)-Vo-tsin(vot) I +P -T[ 2sin(v0Q-Vo;('t( +cos(v olt)) ]hey20 2v,

where the initial field is a (0) = a 0, and the initial electron phase-space coordinates are r(0)= ( and v(O) = vo. The phase-
space evolution in Figure 2 is generated by solving (8) and (12) numerically with j = 1, at = 2, and v o = 2, but is also
described analytcally in (13). At I = 0, a uniform "fluid" of sample electrons starts at vo. As the electrons evolve, they
become darker, and are finally black at -c = 1. The continuous distribution of electrons initially forms a "line" across the (,v)
phase-space at vo = 2. As this section of the electron beam moves along the undulator, -r = 0 -+ 1, the line of electrons
distorts and is plotted darker until the final positions are shown in black. As a guide to the phase space paths, the separatrix is
shown given by v = 2 1 a I (1I - sin( + 4)] passing through the critical points (-x/2,O) and (3m'2,0). The peak-to-peak
height of the separatrix is 4 1 a I 1/ and the horizontal position is determined by the optical phase 0). Motion along the v axis
corresponds to an increase in electron energy since Av = 4nrNAy/y. Roughly half the electrons are initially positioned such
that work is done on them; they gain energy and move ahead of the average flow. The other half lose energy to the radiation
field, and move back causing spatial "bunching". The wave equation (12) shows that when electrons over-populate the phase
7r, then the optical amplitude is driven, and there is gain, G (,t) = la (t)12/a2-1. If the bunching over-populates phase iT2,I then the optical phase is driven, and there is little or no gain. In the low gain case G (,c) = 21 a (r) I la -1, the third equation in
(13) gives an analytic expression for the gain. Plotted at the right in Figure 2 is G(-) and the optical phase 0(r). Initially,
there is no gain or phase shift from the uniformly spread electron beam. As bunching develops and drifts near tne phase nt,
the gain and optical phase increase. The density of electrons at phase C is given by the phase distribution function [35]

I ftt 1+7 [sin( -vo' ) -sin()+votcos( -vo)] +...] (14)

which can be calculated frem (13). It is characteristic of the low gain case that the optical phase shift is small so that the
changes in the position of the separatrix in Figure 2 are imperceptible.
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on beyond the ftinlamental phoics of the ! EL interaction and extend the same theoretical approach to include a range of
diverse cftccts.

Electron trajectories through the undulator
The FEL gain dcpends on the detailed trajectories of electrons through the undulator [96-99]. Since K, << K in (4),

the undulator field alone determines the path of an electron and its eventual coupling to the optical field. The transverse
anplitude of a perfect helical trajectory., Kk/2iry=z0.lrnm, is much smaller than the typical beam size, 1mm to 1cm. A
small, imperfect injection angle 0 away from the perfect injection angle (-KI/y in (4)) causes the electron to drift in the

2transverse direction. A co-propagating optical wave of area TrwO will also spread in the transverse dimension due to natural
diffraction. The length over which the transverse optical area doubles, the Rayleigh range nWo / X [100], should be
comparable to the undulator length L = N'. It will be shown later [100] that for small j, the maximum gain occurs when
the transverse optical mode has radius - "4L Xin. If we require th!t an electron does not drift out of the optical mode as they
travel together through the undulator, theui we have 0 _5 l/(t,/N ) using the resonance condition.

An electron traveling at a small angle 0 away from the z axis also has a reduced z velocity , = 10(1-02/2+...) that,- . • 2 2 2.. .
reduces its phase velocity by Av - 2itNy 0 I(l+K ). If we require that a random spread in the injection angle does not
spread the phase velocity by more tho. gain bandwidth, then we recover the same requirement 0 -< 1/(n yN 12) as above from
a different physical argument-

In a iinc.driy pxii izedunduiator D . ( 0, :-" 0), perfect trajectories have a mrz. ccmpli:c mn"i2 _

the helical case where P, is constant without the optical interaction; recall (7) with K, = 0. Solving for trajectories with a
perturbation expansion in powers of K/y, we find the z motion has the form z(t)= P3oct + Az(t) +..., and is not constant
through each undulator period. The small longitudinal oscillations cause the electron phase C, to oscillate every undulator
period [101] by A(t)=kAz()=-sin(2o t ) , (15) 3
where ", = K2f2(l+K 2), and o0 = [3k Oct = koct is the oscillation frequency of the electrons in the undulator. For K > 1, the
fast, .eriodic oscillations are comparable to the optical wavelength and modify the interaction strength in the fundamental
and higher frequency harmonics. The electrons are taken far off-resonance through Av(t)=-4mNcos(2oik) in each I
undulator period, but since the motion is not random, the interaction continues: the interaction strength is reduced as the
,<e,_-trons spend some time out of resonance.

Imperfect trajectories in both the linear and helical undulator will also cause fast oscillations that reduce coupling to
the fundamental frequency, and cause emission and gin in higher harmonics. In the helical case, injection at an angle gives
the oscillating pha-se,

A_(t) 2Kkzy0 sin(woz) (16)
l+K2

\Vhen -i and K are comparable to unity, the amplitude of A Q) is large enough to significantly alter the interaction [102].
Even with perfect initial injection, the electron trajectories can be altered by field errors in the undulator itself

[ 103,10 .Consider the ith period of an undulator described by/ =(0,Bsin(k0z)+ABi .0) with a small error ABi . We
only examine the trajectory at the end of each undulator period and ignore the y motion for simplicity. At the end of the i th
nerioyd, die deflection integrates to Axi ztAKi Xo/'ywhere AK i =eABiX0]2imc . Typically, the deflection isAxi =0.01mm
if the undula'or period has a 1% field tolerance. Over many periods, the electron performs a random walk'in x with varying I
,,t,-p ,:i'e and direction. If we take the same amount of error in each period, AKi = AK, then the typical transverse deflection
aft-. .' peri,'ds is Ax = nA-AKXo/ y JO.lmm. Requiring that the transverse excursions do not take the electron out of the
p!hi.rl ce, the field error must only satisfy AK < 1/t . Typically, AKIK = 10 so that random errors are not the worst

in !,,r building7 an undulator; systematic errors over several undulator periods can be much more damaging.

Natral undulator focusing, betatron motion
.w id r iin -,(I hilator with an small angular spread over a small cross section may have sone of the

;II '." %Vln t" electron beam is larger in cross section or has a larger ani.uar sprcald, the tiel I
. ' ,l :. , r f ht inclii'Lcd to calculate trajctorites. -rou itllv, these ields tend to 10u<U thel'
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focuses electrons back toward the undulator axis. Under the proper conditions, the whole beam is confined so that koy << 1
at all points along the undulator.

The x component of the mouton is exactly integrable, and can be substituted into the y and z components. Averaging
over an integral number of undulator periods Xo, allows us to concentrate on and solve for the larger scale betatron mouton.

K2

I K2y ksinh(2y) , and P = P30 =constant (18)2y 2

i assuming (K/Y) 2 
<< 1. If the natural focusing is successful so that koy << 1, then the y motion is given by

* 00

y (C) = - y(t) (19)

where the dimensionless betatron frequency is wo = KkoL/y= 2iNKIy. Typically, with -y= 102, N = 102, and K 1, we have
WD = 2t, or one betatron oscillation along the undulator length.

The general solution to the betatron motion is

y () =Yo cos(oWPt) + - sin(coot) (20)I
where y (0) = Yo and y (0) = L 0, are the initial conditions, and 0Y is the initial injection angle away from the z axis along the
yaxis. Bodrinjection-on-axis at an angle,-ot-njection off-axis-at.no-angle will-result in betatron motion. The longitudinal z
motion accompanying the transverse betatron oscillations can be derived from y -2 = 1-i since y= 0. In the relativistic limit
and near resonance, we can express the modification to the phase velocity as

2xN 2 2 2 2

AVI I=K2 (K koy o +Y0y,) (21)

Note that Av5 is a constant of motion for the harmonic oscillations in (20) so that an electron's phase velocity does not
change as it undergoes betatron focusing. If we require that Pe initial spread in positions Y-o does not cause a spread in phase
velocities greater than the gain bandwidth, then kJo < IlN 1" = 0.1 for K = 1.

In an FEL experiment, it is desirable to make the two contributions in (21) comparable because of the properties of
electron beam emittance. The electron beam quality that the accelerator and transport system present to the front of the
undulator can be described by "emittance", ey = xTc00y where Y' is the rms initial position of electrons in the beam along y
and 0, is the rms initial angle of electrons in the beam along the y axis. Both YTo and Oy can be changed by focusing fields at
the entrance of the undulator, but e is fixed. A wide beam, with electrons spread randomly over a large range of initial
positions y0, starts the FE.L interaction with a broad range in phase velocity, even if the beam is monoenergedc. Likewise, ifI a small beam is focussed sharply at the undulator entrance, the range of initial angles may degrade the electron bunching.
Matching the two contributions to the phase velocity spread requires that Kkoa) = ,0*,. If we match the contributions, and
require that emittance does not spread the electrons beyond the gain bandwidth, then we have ey -< X/4yNK. Typically
(assuming K = 1, N = y = 102, X = 3cm), the FEL requires emittance in the range of lmm-mradian.

The example above provides no focusing of the beam in the x direction. In an experiment, external focusing magnets
are often used to confine the beam in both directions even with the aid of betatron focusing. Additional focusing in the x
direction can be obtained by shaping the magnetic material providing the field source [105]. The gap between the magnets

I on either side of the electron beam diminishes so that the rms magnetic field increases in the x direction just as in the y
direction. With a parabolic shape to the magnetic pole faces, the focusing can made equal in both x and k, and more
importantly maintains the electrons resonance condition along the undulator.

e aLienard-Wiechert optical fields
The properties of the electron trajectories in the undulator determine the character of the spontaneous emission

spectrum and ultimately the FEL gain. The Lienard-Wiechert potentials [106,107] describe the radiation fields created by the
electron's transverse accelerations in the undulator. The Lienard-Wiechert "acceleration field" is proportional to the
acc,cration f,, and falls off with distance as I/R; for most FELs, the instantaneous Coulomb fields are of less importance.
Ideal electron trajectories without harmonic content (K is not too large) are inserted into the expressions for the radiation
i hlly At lark e distances from the undulator, near the undulator axis, yO << 1, the Lienard-Wiechert electric fields from a
i-h ' d ([11) I m lin (I ) undulator are

geK y k, 4eKy 3k0/ - ( >i:(n), '"), -cos;(0i '), ,, and l". . ( sin(w,,, "). 0, 0 ) , 22)
R R

i-".-" ,-. "=t, V- R(t")', , R I C I - r'() is the trajectory of a s;ngle electron. lhe

, : , !. i ' ru , i .l aitn, in Oe midruo, : inlulator r- (i), k(s , but t1e retarded ime altcr., thve os;.:illation
r'l ,' t -on In Ow LO) ('(-1c rlllll)llll (d the -:ldtation polarization from [hc undulatol
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polarization is clear. The strength of the radiation field is proportional to the electron acceleration through K, and decays
with distance R as expected.

The retarded time describes the relativistic Doppler shift of the radiation and the dependence of the emission frequency
on the angle 0. Far away from the undulator, the retarded time 1' is given by t' = £ - iff7(t')/c where if is the unit vector in
the direction of observation. The largest component of the electron trajectory is ! = ( 0, 0. I3oct ) with smaller corrections
down by factors of KI.y. Solving for the retarded time, we find the fields (22) have the Doppler shifted frequency of the
oscillating electrons in the undulator. The retarded time is C z 2 t/(l+K +y 202), and the resulting radiation frequency
observed is

2'y2 (0
2o 2 (23)

i +K+ 0
This relation gives the frequency of radiation off-axis as well as that already derived on axis. At increasing ang le off of the

undulator axis, the radiation frequency decreases dramatically as 0 -- 1 /,y. For a typical electron energy y = 10 >> 1, only asmall angle 0 = 10-2radians is needed to change the FEL frequency by as much as 50%.

Spontaneous emission
The electron trajectories calculated previously remain accurate during spontaneous emission because the radiation loss

is smalk,-E-ven-with shnple, idt.d;zd eleco-on uajectories, -the adiadon's fiequency and angular distributions are
complicated since we have just seen that the frequency of emission changes with angle. There are many reasons to
understand the spontaneous emission process even though the FEL gain mechanism relies on stimulated emission.
Spontaneous emission is necessary for FEL oscillator start-up, or a detailed description of the development of coherence. In
the super-radiant amplifier, spontaneous emission in the beginning of the undulator is amplified by the co-propagating, high-
current electron beam. In any FEL, the spontaneous spectrum and angular distribution can be useful as a diagnostic tool forthe electron beam trajectories and the undulator quality. Harmonics, both coherent and incoherent, are also important to FEL

operation.
The relativistic Larmor formula [106] gives the total power emitted from one electron, but with no spectral

information. With an ideal helical trajectory, the Larmor formula is easily evaluated, P = (8nr2/ 3 ) (2-y2 B2cI8r), and
gives a useful physical interpretation of the FEL radiation process. The first factor is recognized as the non-relativistic
Thomson scattering cross section, where r o = e2Imc 2 is the classical electron radius. The second factor is the energy flux in
the approaching helical undulator field as "seen" in the frame of the relativistic electrons. The back-scattering of the virtual Iphotons from the undulator field is the fundamental process of spontaneous emission in the FEL. In the electron's frame, the
approaching periodic undulator field is indistinguishable from a powerful, coherent electromagnetic wave; this is the
Weizsacker-Williams approximation of the scattering process [106]. Furthermore, we know that the energy of the photons
emitted is ho) and the emission time is LIc; so the transition rate, or emission probability for one electron passing through the
undulator is WT = (P /hoa)(L Ic) = na.NK - where a = e ilc = 1/137 is the fine structure constant. Typically. WT = 1, so that
each electron emits only about one spontaneous photon while passing through the undulator.

We can understand more details of the process by examining the dynamics of the relativistic radiation cone. Radiation
from a relativistic particle is confined to a forward cone of angular width - 1/ y. The electron trajectories above give the
maximum deflection angle - KIy in each undulator period. If transverse motion in the undulator has a large amplitude, the
forward radiation cone will periodically deflect out of a detector on-axis at infinity ("the search-light effect" [106]). The
requirement for the cone to stay in the detector is K < 1. If K > 1, then radiation from several harmonics.will appear in Iaddition to the fundamental. However, since we do not use K >> 1 for FELs, the radiation process should be distinguished
from broad-band synchrotron radiation and bremsstrahlung.

The complete frequency and angular spectrum can be calculated without much difficulty using ideal trajectories [101-
103,108-112]. The intensity distribution d I/d~dcoa is the energy radiated into the solid angle d a per unit frequency
interval do), from one electron. Figure 3 shows the radiated intensity for a linearly polarized undulator with K = 1 and
N = 5. Intensity contours are plotted as a function of y 0 and frequency co /2Y /2O with brighter points (white) in the plane
indicating peak emission of [8(eyN) 2/c ] x 0.047, while black areas indicate no emission; two white contours are Isuperimposed on the intensity plot. The scale at the top can be used to evaluate the intermediate grey emission intensities.
The angle 0 moves away from the z axis along the x axis. The spectral width of each emission line is determined by the
number of periods N and occurs in a narrow range of wavelengths satisfying Av -- 21t. We have taken N = 5 in this example
so Xs to make the regions of emission more clear in the figure; normally, N - 100 and the regions of emission are much more
narrow and well-separated. "lhe frequency at the line center of each harmonic is shifted towards lower frequencies with
inrcaing angle. A number of harmonics are present on and off axis. The number of peaks in each harmonic over the full
anvular ranvne i , equal to the harmonic number in the linear undulator; in the helical case there is no harmonic emission on

5LI* ill /'q r,., t''f,,-,'/ }. '; 55 '?'7
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Figure 3. Spontaneous emission from a linearly polarized undulator.

The harmonic emission in either the linear or helical undulator is caused by the fast oscillation of the electron phase
in each undulator period as described in (15) and (16). The phase oscillations in both (15) and (16) are negligible when
K << 1, and there is no harmonic emission. The fast oscillation frequency 2 ok. in (15) shows why the emission from the
linear undulator above has only even harmonics on axis, and the dependence on 0 in (16) shows why the helical undulator
only emits harmonics off axis.

Coupling to higher harmonics

Spontaneous emission in the harmonics indicates that gain may also be possible in the harmonics. Several experiments
have already observed harmonic emission from an FEL [76,113,114], and harmonic gain has also been measured [115]. Use
of harmonics could significantly extend the FEL tunable range to shorter wavelengths; it may also be possible for the FEL
oscillator to operate in multiple harmonics simultaneously. The self-consistent, nonlinear wave and electron equations, (8)
and (12), can be generalized to describe FEL operation in a single harmonic (101,111]. The fast oscillating phases in (15)
and (16) are responsible for harmonic emission, but we actually want to describe the slow evolution about these periodic
oscillations and recover a slowly-varying theory. The new dimensionless current densities found below contain the coupling
factors that describe the averaged effects of the fast, periodic motion. When used in the combined pendulum and wave
equations, (8j'and (12) are again valid in both strong and weak fields with high or low gain. We average over one undulator
wavelength to_ get the slowly evolving z velocity, P, and define the dimensionless phase velocity as
v(t)=L((k+ko) ,(t)-k]. Integration of v(t) gives the electron phase (t)=(k+ko)-(t)--ot as usual. The averaged
equations of motion then define a modified dimensionless current in the linear undulator case,

8Nh (eitK [ J (h-i)2 (h 4) -J (h + )2 (h ,) ]L )2 p
Ic. 3 2 for h = 1, 3, 5... (24)

Y mc
where = K2 2(h+K ), and h is the harmonic number; h = 1 is the fundamental. The cylindrical Bessel functions J, express
I weiphted coupling between electrons and light due to the time electrons spend in periodic longitudinal motion while
trant.f,'rring energy to the optical wave. Note that the linear undulator has reduced coupling in the fundamental (h = 1)
proFmrtional to [/,; )- J,(,)J: for K 1, this is only about a 20% reduction. The harmonic coupling diminishes aZs h
ir-s',e ;, but dJi 'o slowly if K ? I

In the hehcal undulator, imperfect injection can also cause emission and gain in higher harmonics. The new couplingI :'& iuitl in the same manner as discussed above and the modified dimensionless current density is
8g,'h (x'KJA -0 (h/l. ): p

I for h 1, 2 , i
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There is also gain off axis that could be used to tune the FEL wavelength as shown in (23) without changing the FEL electron
beam energy. However, confining the electron beam with the optical mode provides azl important constraint that limits the
tunable range.

Collective high gain

When the dimensionless current density is large j >> 1, the fundamental gain mechanism in the FEL changes in

character [46,55,56,61]. The high gain regime is becoming increasing important as accelerators are specifically designed and
optimized for the FEL interaction, but presently Table 1 shows that only LLNL has reached j = 104. Maximizing j can
depend on several factors. Undulator technology appears to yield X-3cm, and the optimization of gain (j -c K2) without
severe harmonic emission establishes that K-I; most experiments in Table 1 show only a little variation in these parameters.
The electron beam density is determined by the current and the size of the beam, p = 3xO'1(A lecit_, where r, is the
electron beam radius, and the current I(A) is given in Amperes. A typical beam density is p = I.0 cm for I.= 1OA and
r, = 1mm radius. If we assume the electron beam size is comparable to the optical mode size 1UJ, then the dimensionless I
current depends only on j -c IN3Xla. The penalty for increasing the undulator length indefinitely is that the sensitivity to
emittance and beam quality increase with N (recall that the gain bandwidth decreases as I/N); the penalty for increasing the
current indefinitely is that the beam quality from the accelerator begins to decrease. Finally, we see that gain at short
wavelengths is more. difficult because relativistic electrons traveling nearer the speed of light are more difficult to bunch.

The basic equations (8) and (12) are valid in the high gain regime so we can explore the pnase space evolution
numerically, in Figure 4, me continuous "fluid" of electrons starts on resonance at vo=G in a weak field a-o-.2 witiv . . 3
j = 50. The electrons are drawn darker as they evolve just as in Figure 2. At the beginning of the undulator near t = 0 there
is no optical gain or phase shift as shown on the right. Because the beam is on resonance, the electrons start bunching at
relative phase C-+ = irt2, and drive the optical field phase $ in (12), but not the amplitude Ia I. Unlike the evolution seen in
Figure 2, the optical phase starts to evolve before the gain. It is when the optical phase increases enough to shift the relative
phase p+,O towards rt that gain begins. This is so important that the maximum gain occurs on resonance in the high gain
regime, where both the electron bunching and the optical phase evolve the fastest. The height of the separatrix ( - !a 1 V2)

increases dramatically because of the high gain, G = 19; the optical phase O()t) moves the critical points in the separatrix to
the left by about n/2. In the low current case of Figure 2, the optical phase change was negligible, but it is crucial here. 'h!!
interaction is collective since all electrons interact with each other through the growing optical wave amplitude and phase.

I
A"I FEL. PhFK poc Evo~kb A

-2 K/2+ A .0
~3.14

2rr/2 0

Fip, rt H-I phtsc-space evolution in the high gain case.

v' 1m nd ( n,, (8) and (12), can also be solved analytically in the high gain regime with weak
,\ :rn : og na- lls eau non-line-ar behavior, but would also diminish the potentially high gain. In weak
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a f ,j od ,,'-E F (T') e V'(- rv "

a = e a('-t') (26)

where F (t') = Jdq f (q )e -'q ' is the characteristic function of the distribution f (q), f (q) is the distribution of initial electron
phase velocities vi = vo+q about v0 . and Jdq f (q) = 1. All reference to the electron phases has been removed, but there
remains an average over the distribution of initial electron phase velocities.

To solve (26), consider a perfect beam at resonance v0 =0 so f(q)=8(q) and F()= 1. Taking successive
derivatives, (26) simplifies to a (r) = ija (t)!2. !f the current density is small ] - 0, or the evolution time is small T << 1, we
have the result a (t) = ao(l+ijt /12+...) showing the initial growth in the optical phase and no corresponding growth in the
optical amplitude. The general solution has three roots describing complex exponential changes of the field. In the high-
current limit, j >> 1, the fastest growing root dominates and describes exponential gain G (,t) = exp [(jr2)" 3]i/9. There is
little change in the field during the bunching time, A < (2/j)1/ , that precedes exponential growth. During this time, the
electrons move from their initially uniform phase distribution to bunch near the phase +4 = As soon as bunching
forms, the high current immediately causes exponential field growth and high gain. The large accompanying optical phase
shift, O(t) =q//2) "i/2, is the distinguishing feature of the high gain regime. Note that FELs with j - 104 have enormous
gain G - 10 so that saturation is almost assured.

In order to better understand the change from low gain to high gain, Figure 5 shows the surface of gain spectra
ln(1+G (v0 ,j)) as a function of dimensionless current from j << I to j = 50. In the low current region, the gain 3spectrum is
anti-symmetric about resonance v0 = 0 and -is given by- the third equation in (13), G =[2-2cos(v0)-v0 sin(v0r)]/v0 The low-
current gain bandwidth is about Av0 = it. As the current is increased, the gain spectrum distorts to become more symmetric
about resonance and the peak gain available increases. The peak of the gain spectrum moves toward resonance, and the
spectrum has a long tail for vo < 0. The high gain bandwidth becomes larger with increasing current and is given by

116Av0 - 4j

i k-)C1+CD

II/
-12 )

Figure 5. The gain spectrum G (v0,j) dependence on j.

Gain degradation due to electron beam quality

Most FEL experiments use electron beams that do not fully satisfy the criteria for a perfect beam, and operate with a
spread in phase velocities that is about equal to or even greater than the gain bandwidth. Optimizing an FEL design leads to
considering j oc IN 3X.'2, but X is usually determined by the application; the tendency for shorter wavelengths to decrease j
makes the burden of optimization even greater on the remaining quantities I and N. Strategy for increasing j o- IN 3 is
limited, because increasing I tends to decrease beam quality from the accelerator, and increasing N tends to increase the

scnitivity to the beam quality by narrowing the gain bandwidth. Consequently, FELs are often designed to operate in the
I warm -bam' regime where there is some, but not too much, gain degradation resulting from the effort to maximize / and N.

In .tron,' optical fields I a I ?_ r, where electrons are spread in phase velocity by the Flt, interaction itself, the initial spread
Ji.iallv come less important in comparison. Therefore. the important warm-beam regime can be explored in the weak-
fild imit wii I the inteer)-di ffcrenti al equation (26). "The characteristic function F(t) in (2) describes gain degradation
t lrh he di ;triutitln of initial electron phase velocitics f (q) aout v0 [ 16,1171. Note tI;it F and f (q) only depend on
th:•  ,', initial conditions with the subsequent dyianamcs dcscritd exactly.

i
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In general, the electron's initial phase velocity Vo+q will have a random contribution q from a random element of its
2 2 2 22 2energy 4YtNAy/y, angle 2itNy 0 I(I+K ), and transverse position 21cNK k0 Yo0 (I+K ) at the beginning of the undulator.

For example, a Gaussian energy distribution gives a Gaussian distribution in phase velocity f0 (q)= exp[-q 2/2o]/'2'qo
about vo where OG = 41ENAy/y is the standard deviation. However, because of the quadratic dependence of the phase
velocity on entrance angle and position, the phase velocity distribution f (q) is not the same distribution as is the spread in
angle or position. In an undulator with small betatron focusing, w1 = 2tNKty << 2 1r, a Gaussian spread in angles, symmetric
in x and y, gives the exponential distribution f0 (q) = exp(q tan) I Ge for q <_0; and f0 (q) = 0 for q > 0, where

o= 41tN-y 0 (I+K ) and 0 is the rms angle away from the z axis. An angular spread tends to give an asymmetric
distribution in f (q) because small random angles in any direction away from the z axis will only slow down the electrons
from v 0 .

In a typical undulator with K-i, there would be betatron focusing. Ignoring the lack of focusing in the x direction for
simplicity, we can use (20) to find the distribution function f (q) for an electron with rms initial positions Yj0 and angles 0,
along the y axis. With a initial Gaussian distribution in Yo and 6y the resulting distribution in phase velocities is

exp[ q (ae,+o)I2aoa] 0 -q lo,-o, I]
S(q) = J-yoy , for q<0; (27)

2 2 = 2 2-2

and fizz (q) =0 for q > 0, a0y 47Ny2 0I/(1+K2 ), = 41NK k oyo1(1+K2), and I(Z) = J0 (iZ) is the Bessel function of
,mIagina-y argumcnt. When the be.m is matched so that crA, = acy = cry then we recover the exponential distribution
f (q) = exp(q/cy)/apy for q _ 0; f m (q) = 0 for q > 0.

When the distribution function f (q) is found, the characteristic function F (T) = Jdq f (q)e -4q" can be determined and
used in (26) to evaluate the evolution of the FEL optical field a (,r). For the distributions given above, we find the Gaussian
spread in energy gives Fc (c) = exp(--CGt 2 /2), the Gaussian spread in angles away from the z axis gives Fe() = (1-i0e) - ,
and the betatron focussed beam in the y dimension gives Fy (r) = [(I - iaey 'c)(1-ia r)1- 1/2 from (27). The matched beam in
(27) has ar = aey = a so that F (t) = (1-ia o'r)-. When a beam is perfct, c=, then F (t) = 1. As the optical field a (r)
in (26) starts to grow because j > 0, the integrand containing a (r') also grows to further increase the growth rate. In the high
current case J >> I with v0 = 0, this optical feedback leads to exponential growth of the field. When the beam is not perfect,
a > 0, then the magnitude of the characteristic function IF(r')l decays in the integrand of (26) to describe the decay in
beam's ability to bunch for a particular distribution f (q). The characteristic time for decay is Y-1 so that a poor quality beam
with a >> t decays quickly in its ability to bunch. The characteristic function F (t) carries with it detailed information
describing just how each distribution function f(q) would diminish the FEL's ability to bunch electrons. It can be easily
shown that if f (q) is symmetric, then F(r) is real, andf (q) is asymmetric, then F(r) is complex.

Figure 6 shows the decay of the FEL gain spectrum ln(l+G (v0, aG)) for a Gaussian spread fG (q) of increasing width
a'G = 0 --+ 8, and low current j = 1. For all distributions, the characteristic spread that causes decay in the peak gain is a* -n
as seen in Figure 6. At aG = 8, only about one tenth the original gain is available. As a increases, there are some common
features to all types of distributions: the peak gain decreases steadily, the initial phase velocity that gives peak gain increases

away from resonance, and the gain bandwidth becomes broader in Vo. But, the detailed structure of the G (v0 , a) surface, and
the amount of degradation at any point (vo,a) can be dramatically different for different distributions f(q); as a practical
matter, some distributions are clearly better than others giving us a new dimension for FEL design optimization.
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IF(-r') l's rate of decay, the decay of the beam's ability to bunch, is comparable to the optical field's growth rate (j/2)"'/2 in
the high-current limit. This comparison gives the characteristic spread a1 : j 13 where the beam quality begins to degrade
gain in the high-current limiu Since aj,-N and ocN., the resulting relationship does not depend on the undulator length,
but on a comparison of growth rates along "t. For j-104, the increase in the critical spread a, = 20 >> a* = n can be
significant. Furthermore, recall that for large j there can be extremely large gain along the undulator, so that even if a beam
has a a1j resulting in a large amount of gain degradation, there can be significant and useful gain remaining. The different
gains attainable from different distributions becomes greater when the current is large j >> 1, because the potentially high
growth rate makes the integrand in (26) sensitive to small differences in the decay of F(r'). As more experiments begin to
operate in the warm beam regime with larger j, the present agreement between FEL theory and experiment might be strained
as the distribution function from the accelerator and transport system are not determined accurately enough.

Coulomb forces
As the dimensionless current j,- p is increased, bunching of electrons is resisted by the inter-electron Coulomb

potential. We can calculate the Coulomb force on an electron due to the periodic density variation in the bunched beam
[56,63,101]. To incorporate the electrostatic force in the electron's equation of motion, evaluate the longitudinal electric
field E. from all other electrons using Poisson's equation. With the same approximations as led to (8), the new pendulum
equation has an additional term that depends on the averaged phases of the electrons in the beam,

tooj

= v = la Icos(C+4) + - (sin() <cosQ)> - cos(C) <sin(Q)>) , (28)

where = K2/2(l+K 2). The coefficient of the longitudinal Coulomb force can be written as j/4N4 = nto 2(l+K 2) where
o, = (4nre 2p/-y 3m ) "2(L Ic) is the "relativistic plasma frequency" times the "FEL interaction time" LIc. When the beam is
uniform, the new term is zero, but non-zero Coulomb forces develop as the optical wave causes bunching. Even without the
optical wave, plasma oscillations can grow from any noise source and have the dimensionless frequency = (jT2N) 1

V when
K = 1. This new frequency of oscillation can alter the resonance condition and the FEL optical wavelength [46,56] in the
high current limit. In order to get one plasma oscillation during the FEL interaction time, it is required that
j > 2(2t) N - 104 for K = 1. We see that Coulomb forces are negligible except for large j and extremely high gains.
Typically, there is only a small fraction of a plasma oscillation during t = 0 - 1. Even when j-104, the relativistic plasma
oscillation plays only a minor role in the electron and wave dynamics where there are already dramatic collective effects due
to high optical gain.

Strong optical fields, saturation
The Maxwell-Lorentz theory described in (8) and (12) is valid for strong optical fields where la I > it. The

dimensionless fie!d strength is given by several physical variables, Ia IoKN2 E/y 2. The actual optical power density
P = E 2c /8it that results in strong fields depends on undulator properties, length and strength L and K, and the electron beam

2energy ymc2, because they all contribute to the light's ability to change the electron phase C. A more energetic electron beamrequires more optical power or a longer, stronger undulator, to achieve the same degree of bunching as a less energetic beam.
The strong field regime is attained when the electron phase can actually be trapped in the closed orbit region of phase space.
The fraction of the electron beam energy converted to light, the FEL's efficiency, is larger than in weak fields, but gain
decreases indicating the onset of saturation. The field strengths that give zero growth rate along the FEL amplifier, or
steady-state operation in the FEL oscillator are typically far beyond the onset of saturation, and are well into the strong field
regime. We first concentrate on the onset of saturation, and how the FEL interaction is modified from the weak field regime.

In weak fields I a < it, changes in the electron phase C(r) remain small so that no electrons overtake, or fall behind,
any other electrons in the beam. The result is a smooth distribution in phase as shown in Figures 2 and 4, and calculated in
(14). The amount of bunching, or spatial distortion in the beam, can be imperceptibly slight even though the gain, the rate of
change -, the diko' 'n, ",-' ' t 1 -, _ 77 - . = r St'n, PItr, 1. U4h the proper initial conditions can overtake, or fall
behind, other electrons in the beam, complicating the distribution in phasef Q). A perfect beam, where all electrons start at
a single phase velocity v0, will have infinite discontinuities in the phase distribution function in strong fields [118]. In reality,
the infinite discontinuities would be smoothed by the random imperfections in the phase velocity present in any experiment.
The electron bunch is moved too far along the phase axis of phase space, when the field is too strong. Looking at the
pendulum equation (8), we see that a bunch, once formed, at the proper relative phase for gain + = n, would soon evolve
by A (t) - I a I Z 7t to the relative phase for absorption ( + z 0.

A bunch formed at the relative phase + 0 = it is on a downward path in phase space along the phase velocity axis. It
is at this relative phase that electrons lose energy most rapidly and drive the optical wave most efficiently. The energy that
can he lost by the bunch is determined by the height of the separatrix path 4 Ia 1112 from peak-to-peak. T-he change in the
pha.sc velocity is Av(z) -4 1a 1 12 - 2r when la I = rc at saturation. This change in the bunch's phase velocity corresponds to
a chan,,e in the bunch's oner y by Av :4.itN Ay/y 21t. In strong fields, the change in phase velocity is large enough to move
Thc, (:lccron hunch acr;).; th" in sp ct unm by as inuch ;is the glin bandwidth; the bunch moves from an energy where the
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interaction gives gain to an energy where the interaction gives absorption. The fraction of the beam energy that can be
extracted by the optical wave as saturation begins is the "natural" efficiency il* z 1/2N. A long undulator with N >> I may

3Ihave a larger gain since joN . but the natural efficiency is reduced. The real efficiency of either an FEL amplifier or
oscillator can be much larger than the natural efficiency, since rl* describes just the beginning of saturation, and the
corresponding small decrease in gain due to the strong optical fields.

Figure 7 shows the result of solving (8) and (12) numerically with 2000 sample electrons in a strong optical field
a0 = 20 and for low current j = 1. Initially, the electrons were started with a random Gaussian spread corresponding to r 1
about the phase velocity vo = 5. This phase velocity gives nearly maximum gain at this field strength. The small random
spread does not significantly modify the gain in this strong field, but is just included to provide an example of what a spread
in phase space looks like. The final phase-space positions of the 2000 electrons are drawn in (Cv) with the optical gain and
phase evoluion in 'r shown at the right. 'Me gain and phase begin to grow rapidly near the beginning of the undulator

because of the strong fields and the rapid development of bunching. The best bunching is formed part of the way through the
undulator at about 'r 1/2, then the bunch evolves further, past the relative phase C+4 =it around to C+ =0. As this
occurs, the gain first levels off and then even decreases. The over-bunched electron beam drives the optical wave, but
continues to evolve in phase so that energy is actually extracted from the light wave at the end of the undulator, and flows
back into the electron beam. The final gain G = O.03j is significantly reduced from the theoretically possible G = 0.13j in
weak optical fields.

I" FEL Ple Space Evjt-i MR

J-1 a-20 ,0 -S a-

12 .,h.- O0.03

-r i

- iT/2 3rr/2 0 -0. 3
Figure 7. Electron phase-space evolution in a strong optical field.

Not only does the peak gain decrease in strong optical fields, but the gain spectrum G (v0) changes its shape as well.
Figure 8 shows the behavior of the FEL gain spectrum as a surface G (v0 , a 0). The gain is calculated numerically at each I
point (v0 , an0) with low current j = 1. In weak fields a0: n , the gain spectrum is anti-symmetric about resonance vo = 0 with
a peak value G = 0.13j at the phase velocity vo= 2.6. The peak absorption, or loss, is G =--0.13j at the phase velocity
v0 = -2.6. The gain bandwidth in weak fields is roughly Av0 .t. As the initial field strength no increases to 20, the peak
gain decreases to about 25% of the weak field value. The phase velocity that gives peak gain increases away from resonance
as the field strength a0 increases. As the gain spectrum decreases and distorts, it also becomes broader in vo. The spectral
width, from peak gain to peak absorption, roughly follows the full width of the separatrix 41 a 11r2 as can be seen in Figure 8.
This gives yet another, equivalent view of the onset of the saturation process. When the separatrix height 21a 1 ' becomes
grcatcr than the phase velocity for peak gain in weak fields, v0 = 2.6, then an increasingly larger fraction of the beam
hoc ,rn, trappd4 in the closed orbit region of phase space. The field strength for the onset of particle trapping in strong fields

r hvilv a,- -" found before. The gain bandwidth roughly increases with the height of the separatrix above resonance,
and ; ,ivt-n hv I\%v' -- 21 a I112 in the strong field regime.

h II hi r, w.'het, ite I ui n is low to noderate, the optical field grows over many passes as new electron
, - i, ;i ( c'rato'r cntinleC to amplify it. After ech pass, die optical field is a little stronger, and the gain

. r i , h h iorthrr :Iali, th O , a x is iII ligurc 8. We expect the relatively narrow opucal spectrun to
,r lr. ;. I 'n ad fill, w th,, l'k ,:na iin Firure 8 a-s the power grows [681. Typically, an IEEL oscillator will

, : ' I ' ow , 'vh,,1 t,, th, . k i,'ht rc i h"i ) to dhe stron filid re.vime nie:ir satlur;thon. As it do s Sil,
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the optical wavelength is observed to shift to longer wavelengths, corresponding to a larger initial phase velocity, just as
shown in Figure 8 (69,731. Note that the general features of diminishing gain due to beam quality in Figure 6 are similar tothose due to saturation in Figure 8. This is not a coincidence since the strong field interaction induces a spread in phase
velocities about equal to the height of the separatrix 21a 1112. If we were to plot the gain surface show' in Figure 8 as a
function of the induced spread a. =21 a I Figures 6 and 8 would almost be identical.I

0.13

II

Figure 8. Gain spectrum G (v o, a ) in strong optical fields.
In the high current regime j >> 1, saturation begins at a different field strength, but the essential physics of saturation isi the same as has been discussed in the low current case. In the high gain regime, the optical field magnitude grows as

a(r)=aoexp[(t2) 1f34rF32]13. The pendulum equation (8) shows that at the field strength aj =2(j/2)m the electron
phases can be shifted by as much as AC(r) = r causing the onset of saturation. For j - 104, the saturation field a = 200i can
be significantly larger then the low current case as has been observed [85]. The efficiency in the high current limit is alsoI greater than in the low current case. The saturation field aj causes a change in the electron phase velocity Avi = 22)1V3
that correronds to a change in energy Av = 41tN Ayty. The natural efficiency in the high current limit is il. =/2) f2nN.
For j-10 and N-10, the efficiency is typically ii, = 0.03. For the LLNL ELF experiment described in Table 1,
71 0.09.

I Alternate undulator designs
It was appreciated some time ago that special undulator designs could enhance certain characteristics of the FEL

interaction for specific applications [2]. The undulator period and field strength can be varied along the undulator to alter the
detailed interaction properties. The analogy in a conventional atomic laser would be to change the properties of the electron
binding-potenti4 during the radiative emission time L Ic = 104 s. This aspect of the FELs design flexibility is one of its most
attractive advantages. To illustrate, we consider two designs, the "tapered" undulator and the two-stage "klystron" undulator,
that can be characterized by simple modifications to the pendulum equation (8). The goal is to present a clearosimple picture
while remaining conceptually accurate. More general designs are possible and will be the subject of continuing research in
the future.

At the onset of normal FEL saturation, strong optical fields trap electrons in closed phase-space orbits causing them to
lose energy and decrease the interaction strength, or gain. As the energy of the beam decreases by Ay/y < 0 and shifts across
the gain bandwidth, the corresponding change in the beam's phase velocity is Av = 4tNAy//y =-2t. In order to extend this
saturation limit, the undulator properties can be altered along z to restore resonance and the interaction strength [52,53]. A
change in the resonant phase velocity can be accomplished by "tapering" the undulator wavelength XO along z, or "tapering"
the undulator field ,trenfi.i B along z, or both. Each method is conceptually equivalent to providing a longitudinal
accelerating field E, along z to restore the energy of the electrons directly. In weak optical fields, the electron's equation of
motion in the tapered undulator is of the form v = 5 +... where 5 is the artificial acceleration given by 5 z -2tNA. / when
the undulator wavelength is decreased, AX. < 0, or by 5 = -4rtNK 2AB/B(I+K2) when the undulator field strength is
decreased, AB < 0. With tapering included, the pendulum equation and wave equation have the form

v f-j < e > (29)

Tie '-consioit equations (29) are valid in weak and strong optical fields with either high or low gain, but are not validI ,hn the cfficicncy i,; expected to be large. Wheni high efficiency is anticipated, so that the electron cncrgy and unduhltor

I



-62-

properties change significantly, the more accurate equations of motion (5) and (7) can be used. In the limit of N >> 1, the
artificial acceleration can be significant with only a small change in the undulator properties. Then, the dimensionless optical
field and current densities are to be evaluated with the un-tapered values of K, X,, and L.

When the optical field amplitude is large enough so that a0 
> 5, some electrons can be "trapped" in the closed orbits of

the pendulum phase space centered near the relative phase C+4-- cos- 1 (-5/ao). In stronger fields ao >> 8 with low-to-
modest current so that 0 = 0, roughly 50% of the electrons are trapped near resonance around T -t and continue to lose
energy to the optical field. Tapering is only significant if the artificial acceleration exceeds the height of the separatrix in
phase space, 6 : 2o and the natural deceleration of electrons without taper 5 > 21t. The electrons that are not initially
trapped, are accelerated away from resonance and eventually contribute less to the interaction. In this view, tapering is
effective because electrons near the gain phase C = t are trapped, while electrons near the absorption phase C = 0 are taken Iaway from resonance and eventually stop interacting; the imbalance leads to net gain. While the tapered undulator works
better in strong fields, it does not work as well in weak fields as the un-tapered undulator. For moderate tapers in weak fields,
the gain reduction is small and simply shifts the position of peak gain to v0 = 2.6- 5/2; larger tapers decrease the gain more
significantly and distort the gain spectrum [119]. A typical value of 5 is given by an undulator with 20% taper in wavelength I
over N = 100 periods, 8 = 40n. For 50% trapping, the efficiency of the tapered undulator is estimated at Tj = 5/8rN = 5%,

and is increased by 10 over the natural efficiency rl* = 112N. An actual FEL system can operate at a power and efficiency
greater than these estimates since we have only anticipated where saturation begins. When the current is large j >> 1 we
have already seen that the saturation field strength is increased and grows exponentially. As a result, the fraction of the beam
trapped can be nearly 100%: an impressive efficiency of 40% has already been observed [85]. Some examples of tapered
undulators and their approximate 8 are given in Table 1.

While the tapered undulator is designed to enhanced the FEL in strong optical fields, the two-stage optical "klystron" is
a design for improved gain in weak optical fields [120-122]. The FEL klystron consists of two undulator sections separated
by a drift, ur dispersive section. The drift and dispersive mechanisms are the same mzthematically, but practically, it is the
dispersive section that gives a substantial increase in the FEL gain for a given interaction length. The optical fields in the
first undulator section , the "modulator", prepare electrons to bunch as they go through the dispersive section, and then to I
radiate coherently in the second undulator section, the "radiator". In the dispersive section, the electron-optical interaction is
effectively turned off because the electrons are far from resonance. The net change in is then proportional to the modulated
value of v upon exiting the first klystron section AC = D V, where D is the dimensionless time of the drift, or is a measure ofthe strength of the dispersive section [122]. The self-consistent equations describing the FEL klystron can be written
compactly as

C =v= lalcos( +), a =-j<e-> , for 0_5T<0.5 and 0.5<T:51 (30)

and A = vD , Av=0 , at T=0.5

The dispersive interaction is applied instantaneously at "r = 0.5 since we know the analytic solution resulting from the drift.
Again, the combined equations (30) are valid in weak and strong optical fields with both high and low current. When (30) is
solved analytically in weak optical fields with low current (a0 and j are both small), and in a strong klystron dispersive
section D >> 1, there are many high peaks that appear in the gain spectrum. Near the peak gain, the gain and optical phase
shift are

D IDI
G (v0 - sin(voD) , and 4(vo) 2- cos(voD) (31)4 8

The peak gain available in the FEL klystron is jD /4 at phase velocity vo = t/2D. Typical dispersive sectionsare designed to
give D = 100 [120]. When the dimensionless current density is Jow, say j = 10-2, the klystron design can give I
G jD /4 =25% gain where the normal undulator would have much less gain, G =O.lj = 0.1%. There are several
successful experiments using the FEL klystron concept as shown in Table 1.

Coherence development I
The FEL equations presented sa far have been restricted to a single mode of the optical field. Because of the

relativistic nature of the FEL interaction, modal decompositions in the transverse and longitudinal directions along the beam
have different characteristic scale lengths. The natural scale in the longitudinal dimension is determined by the gain I
handwidth, 1lV, corresponding to the electron-optical slippage distance NX; this is the distance that light passes over
ehjtrmns as, the electrons travel through the undulator. At resonance, exactly one wavelength of light passes over an electron
a:; th.: cton passes throuh an undulator wavelength: over the whole undulator, N wavelengths of light pass over the

r t ,! ~r "n. e lippale distance N is tle characteristic length over which electrons and light can exchange
t : 2 '::::' ,.,, pa .< In 1h,- 1.v-1:i1n t1 ,l o cIllator, the optical I,;gnal dc',elops from spontanct s emis oiion with an

S .,!a'h 4 ,'. .)v,'r ( iv-1- pIases in the rsomator, mode competition can alllrrow the spetru sgnit .v" "
I..I... I IT) I;,- t \'r' mlu )ne-lo). tie? In jx)j. int scale is roughly tie radius ot tile optical h.x:

-.,:r v .i ,,, , a :5,-,. i ' !) r '.ii t; it l is it pase- through the u u lator lat nu h I.. In tie himeh u I'un
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amplifier configuration, the transverse mode can be distorted and focussed back into the electron beam in order to extend the
interaction over many diffraction lengths. First, we concentrate on the longitudinal modes.

We have assumed a perfectly coherent light wave in the longitudinal direction, and it would useful to understand how
this coherence develops from spontaneous emission. In the low-gain oscillator, the modes evolve independently, and can be
followed with the theory developed already. Each longitudinal mode, or wavelength k = 2nt/k, is identified by a phase
velocity v(k) = [(k +ko)P, -k ]; the undulator wavelength and initial electron beam energy from the accelerator are fixed
during the evolution over many passes. The FEL gain spectrum G (v) with its anti-symmetric shape peaking at v = 2.6 is

determined by the undulator. The spontaneous emission lineshape s (v) , [ sin(v/2)/(v/2) ]2 is symmetric in shape with a
width Av = 2nr. Figure 9 shows the shapes of the gain and spontaneous emission spectra. On each pass, the power in each
mode changes due to the spontaneous emission, the gain, and the loss or output coupling at the resonator mirrors. On the n th
pass, the change in the optical power is [40]

AP. (v) = s (v) + P, (v) [ G (v) - I/Q 1 (32)

where P. (v) is the optical power in mode v, s (v) is the spontaneous emission into mode v on each pass. G (v) is the gain
spectrum, and IIQ is the loss on each pass for all modes independent of v. Only the optical power spectrum P,(v) evolves
on each pass.

100-

C*wr%"=e Evokition

n ~ j-1 0-SO

I _
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I Figure 9. Coherence development and fine narrowing in the FEL.
Over many passes, n = 0 - 100, Figure 9 shows how the normalized optical spectrum P (v,n)IP,, evolves from

spontaneous emission into a narrower spectrum. The peak gain is G = 0.135j with j = 1, and the loss is'determined by
Q = 50. The final spectrum is centered around the phase velocity v = 2.6 at peak gain, and has about 4 times the coherence
length of the spontaneous spectrum. As the spectrum continues to narrow, the development of each mode can be expressed
as a function of the second derivative of the gain spectrum expanded in a Taylor series about its maximum. A simple
expression gives the FEL optical spectrum width after n passes with current j,

Av = 2nt (n j) - 1 '  (33)

The physical width of the spectrum is A)A = (nj) - 
1

. Eventually, at long evolution times, the spectral width is limited by
practical noise sources like vibrating optical components. The original Stanford FEL [69] used an accelerator with n = 10
micropulses in each macropulse burst, the optical. spectrum could have narrowed by a factor of 200, but was limited by short
puls;e effcts as dc(scribed below.

SLIongitudinal ultinioie Theory

'.ort n 1-Y-:. prohlenis can couple the modes in the longitudinal direction so that a more complete theory is
rrquir-,l ii)7,<,7.91,l2t-13 ]. To v;cncrahii. the optical ieli in the longitudinal dimension, we fo!'ow mtltiple positions
t(,l: th-' '()iiIlX .i v 'lJ-') : . 'he tcxtenuo ni to spatial modcs -- (z ) is complctcly equivalent to an extenlsion
in) V)l ,ln'o i l :l.iv iiii b ; ( 1 a (1(k We nort allit all lon iti(idfial dli;tancC to tlic slippage distance so that :iN% z.
1' 1'1 i u t h 'r" i1 i . ' IOw 1 ,' the I l x'r o, sIte' N" neede(dc in a pa"rticullar
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problem is determined by the amount of detail to be followed in the optical spectrum. The optical field sites span a indow
of width IV that is an integral number of slippage distances long; modes that are properly represented in the window are
given by

v, =v 0 -(2 n /W )(I -N w 2) where 1=0,1,2 ,..., Nw - I (34)

where I is an integer, W = NwA; and Az is the spacing between sites. The mode spacing is given by Av = 21E/W, where the
window W is typically only a few, to .,weral, slippage distances long; in most cases, W = I -- 4 is adequate to characterize
FEL phenomena. When the electron pulse and optical pulse are long compared to NX, periodic boundary conditions can be
imposed at the ends of the window W in order to restrict the number of modes and sites followed [130-1331. The end effects
of the periodic boundary conditions are considered non-physical and inconsequential.

The generalized equations for electrons and light are
00 0

C,= Ia. I cos( C+. 1, ) , a =-j. ,<exp(-i ,+)>,+ , (35)

where the longitudinal field sites z are normalized to the slippage distance NX in the window W, and refer to a position in the
optical field envelope. The light, traveling at speed c, remains fixed in z while the slower electrons slip back in the
calculational window. A position in the electron pulse is located at site z+t at time "r, and slips back by NX in the time
,t = 0 -1, 1. The dimensionless current density j,, is a macroscopic variable, and does not distort due to the microscopic
bunching on a much smaller scale. When the electrons pass through the undulator, those at a site z interact with a range of
sites in the optical wave envelope; in this way, the e..ctr 13a and light wa;- cxchange L'n.forn-Ltion, ind the electrons
pass information from one optical field site to another. Often, the site spacing Az is made equal to the integration time step
At, so that electrons slip back one site in the calculational window on each time step. In weak optical fields with low gain, I
the step can be as large as At = Az = 0.1; but in strong optical fields or high gain, At = Az = 0.01, or smaller, is sometimes
necessary. A number of electrons must be followed at each site z as well; the electron phase and phase velocity must be
calculated each time step at each site. In weak fields as few as 20 sample electrons at each site is adequate, but in strong
fields, a few hundred may be necessary.

Short pulse evolution in the FEL
Many FEL oscillators are driven by short, picosecond long, electron pulses from an RF accelerator. When the electron I

pulse length is comparable to the slippage distance NX = 1mm, the modal structure of the pulse current is comparable to the
gain bandwidth, and exotic short-pulse ! ffects dominate the FEL interaction [123-129]. Short-pulse behavior is intimately
tied to the time development of gain along the undulator. At the lower-left in Figure 10, the current density of a short pulse
j (z +t) is shown at t = 0 (black), and at -t = I (white) in the calculational window of width W = 5. The pulse shape is taken
to be parabolic with the form j(z) = j(1-2z Ia1 ) for j(z)>0, zero otherwise; the pulse is two slippage lengths long, a, = 2,
with a peak current of j = 8. The optical pulse amplitude Ia(z,n)l is shown at the left evolving over n =200 passes
through the resonator. The grey scale shows the peak field la(z,n) I = 70 in white, and zero field in black with two
contours. On each pass, at t = 0, the optical wave is not driven because the new electron pulse from the accelerator is not
bunched. At a later time t < 1 when bunching develops, the electron pulse slips back, and drives the trailing edge of the
light pulse. The light pulse is distorted on each pass because gain is preferentially deposited-on the.u-ajling edge of the pulse. IConsequently, the center of the light pulse appears to be traveling slower than c even though in vacuum, the effect is calleQ

"lethargy" [124]. Exotic short-pulse effects in the FEL have been experimentally and theoretically explored almost as early
as the fundainental theory. The agreement between theory and experiment describing this phenomena is probably the best
confirmation of our understanding of the FEL. ,

The rebounding optical pulse, stored in a resonator of length S, arrives at the beginning of the undulator, t = 0, at
intervals 2S Ic ; the series of electron pulses from the RF accelerator must be synchronized to arrive at r = 0 coincident with
the light. Define d, the "de-synchronism", as the displacement between the electron and optical pulses at t = 0 each pass; d
is normalized to the slippage distance, as usual, and when d = 0, exact synchronism, the electron pulse interval is exactly
2S/c. At exact synchronism, the lethargic light pulse drifts away from the electron pulse over many passes so that the
steady-state FEL power is zero. To compensate for lethargy, the path S must be reduced by d -- -2AS/NX = 0.001 -4 0.05.
In Figure 10 with d = 0.01, the advancing of the light pulse is seen in the first 100 passes. Simulations start from an initial
seed pulse with small amplitude and arbitrary shape. The gain and resonator loss at the mirrors, determined by Q = 10 as in I
(32). combine to reshape the pulse until steady-sme is achieved. The total power, P (n) = fdz Ia (z) 2 shown at the lower-
right. has incr a.cd from the seed pulse to strong-field saturation. The complicated optical pulse shape gives the multimode
power :pecu-uIc PI ( v, ri) ,hown evolving in the middle. For reference, the single mode gain spectrum G (v) is plotted at the
bottom croter for i '. Mode 0)np1 tition keeps the fundamental optical spectrum near peak gain in weaik fields, but strong
1icld sOt.uration .Aill meov- p'ak g-in to larger values of v as shown in [igure 8. At saturation, the trapped electrons oscillate
in the7 clo',('4l orfUt '1 phiiuc ',0 on each paxss Over many pass.es, the frequency of dte trapped panlicles mixes with the

in ;ovnentl ., .lnuW to prlIcc sId 'ehamls, a; will be explored in a later Section. At the right is the evolhtion of the I
,'l'. :1 p1.: vtlmt. ct dictriot o[( ,, n ) taken at the end of thew undualator r t I on eACh pass: ie tinal spread in phase
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velocity becomes broad as the field strength increases. The spread induced by the strong optical h,;lds is roughly given by
the peak-to-peak height of the separatrix 4 la /2

111 FElL Rvsg Fivo~tion 11

j= Q- 10 az=2 d=10.,M

kzpr)( OEM 70 f'vr-L yrn)

I

-2.5 z 2.S -38 313-38 3
jcz -) 4-7e4

-2.5 z 2.S -38 380 n 200

Figure 10. The evolution of short pulses in the FEL.
The general features of short-pulse behavior have now been observed in many simulations and several experiments.

At small de-synchronism d ? 0, the power is usually large enough to cause the trapped-particle instability, a broad optical
spectrum, and a broad electron distribution. The optical pulse is short and centered on the electron pulse as in Figure 10; it
can be modulated with sharp spikes due to the instability. When j and Q are large, the spectrum can be chaotic and muchI wider than the normal gain bandwidth. At large de-synchronism, the steady-state power is smaller due to the reduced
coupling, and the trapped-particle instability cannot occur. The final optical power spectrum and election distribution are
narrow due to the weak optical fields; the center of the optical pulse may actually be ahead of the electron pulse. The
microscopic optical pulse length and structure can be alte-red significantly as the de-synchronism is adjusted. The operating
range in d is typically Ad = 0.05, so that the resonator length ,aust be adjusted within a surprisingly small range
AS 1 01t.m.

Transverse mode theory and diffraction

Having extended the single-mode FEL theory in the lcigitudinal dimension, we now explore an extension in the
transverse dimension. The simple wave equation (12) becomes the parabolic wave equation introducing the natural process
of diffraction that changes the optical wavefront along the undulator even without the FEL interaction. The theoretical
approach is general enough to include betatron motion, arbitrary undulator designs, optical mirror arrangement , and drivingcurrents with no assumptions about x-y symmetry in de transverse dimension. The optical field is given spatial dependence
in the transverse and longitudinal dimensions a (xy,zj,) instead of using a modal decomposition [134].

Anticipating the development of longitudinal coherence, the complex optical field envelop is taken to be slowly
varying in z and t with polarization determined by the undulator. The transverse coordinates are normalized to the
characteristic mode size (L Xflt) , so that x (ntL X) - x and y (ntL X) -- y. In the longitudinal dimension, we normalize
to the slippage distance NX, and use the substitution (z-ct)INX -I z. Introducing the dimensionless time t = ctL, the wave
equation takes on the form of the parabolic wave equation

-V.,----! a(r,yVz,)=- <je :,,.... (36)
1 oz
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Cxp(i AtV2/4). we work in Fourier space where the operator is diagonal and may be efficiently implemented numerically
[1341]. The optical wavefronts a (x,y) can now be correctly propagated forward in time, and the beam current will amplify 1
the wave where j (x ,y) is non-zero. When the transverse size of the electron beam and the wavefronts are much larger than

(L 2, ) -. the operator exp( iATV1/4 ) 1 over the propagation distance AT = 1, and diffraction can be neglected. The self-
... s,,- nt evolution of the electron current is governed by the Lorentz force equation fo( each electron in the beam. The
pendulum equation has the same form as before with -- (x ,y ,z+Tj) and v --- v(x ,y ,z +-,T). The theory is now fully self-
consistent in 4 dimensions (x y ,z ,t); a simulation would introduce arrays of sites in (x ,y ) at each longitudinal site z in .35).
The 3D electron array in (x ,y ,z) moves with respect to the 3D optical array at every step AT because of slippage.

The solution to (37) in free space (j = 0) is called a "Gaussian" beam after its shape in the transverse dimension, 3
ao 1 2 ,r ('r-T.,)

1,; (r,T) = exp[ - rlw (T)zo ] exp[ i4('t)] , and 0(c) =-tan-L[(T-T)zo + . (38)
(T)2 + T._2

2 2 1/2,WT =+.T2/ 2= N - 2MC2where r = (x +y ) , w (t)= l+(-- )2 /z0, and the dimensionless optical wave amplitude is ao =47teKLE/ mc 2 as

usual, where E is the physical electric field amplitude at the center (r=O) of the mode's waist positioned at %,. The
dimensionless Rayleigh length is zo = rw 2 IL X where w0 is the physical radius of the mode waist; z 0 is the physical Rayleigh
length (Itw0/A) compared to the undulator length L. As z0 -- ,, so that w -+ 1, 0-40, we have plane waves of infinite
extent. The radius of the wavefront is z0)2 at the waist 'r = r,, and spreads due to diffraction as 't moves away from T_; the
area of de beaa dou'.;,c-= a. p;.:ec a distance A =

Electron dynamics in a Gaussian optical mode I
In the low gain FEL oscillator configuration, the optical mode is primarily determined by the resonator and diffraction.

The radius of curvature, R , of resonator mirrors that are separated by S gives a dimensionless Rayleigh length
z, = (2SR, -S 2 )la2L; typically, Rc is comparable to the undulator length L so that zo - 1. To illustrate some of the effects I
of the "3aussian beam on the electron dynamics, consider the pendulum equation in the weak optical field (38) a0 << 1 with
low current and a large Rayleigh length z0 >>.

00 2
C =v = aoexp[-r /zo] cos [ CO+(l-r2Izo)12zo + (vo-(1-r 2 1zo)/zo)T +... ] +... (39)

where we have taken , = 0.5 so that the mode waist is optimally centered along the undulator. The field strength seen by
electrons diminishes off the mode axis, and the initial electron phase is altered; since the electrons are ini'afly spread
randomly, the new phase is inconsequential. However, the phase velocity of the electrons is shifted by the diffracting optical
field; v 0 -- v 0 -(l-r 2zo)Izo. The phase velocity for maximum gain is now v )= /2.6 + (l-r2/zo)lzp,2and the resonant
optical wavelength is shifted by A"JX = (1-r 21zo)2rNzO. When the electrons approach the mode waist zo , the shift goes to
7ero, but at the center of the mode r--0, the shift can be as large as the gain bandwidth when z o = 1 [100].

If the Rayleigh length is muh larger than the undulator length, the optical mode is too wide, and the field amplitude I
that hunches electrons diminishes. If the Rayleigh length is much smaller than the undulator length, the optical phase shift
can Upset bunching and diminish gain. Solving the pendulum equation numerically in the field (38) with r = 0, the optimum
Ralyleizh length as been found to be z o - 0.3 in weak optical fields [100]. 3

FEL optical self-guiding

!n the case of large current j >> 1, the transverse optical mode can be significantly distorted by the electron beam. It
has been shown theoretically that the large optical phase shift associated with the high-current regime actually focuses the 1
light back into the electron beam [135-137]. This is an important practical advantage for the high-gain amplifier
c:onfiguration where natural diffraction would provide a limitation to a long undulator length. The effect is called "optical

irino", and allows the electron beam and light to continue interacting over many Rayleigh lengths.

In order to understand optical guiding, consider a small electron beam in the middle of a co-propagating optical wave.
In fres space, the optical phase at the center of a wavefront evolves as A, = - At/z o for a small step At. The FEL interaction
alco lr he,is the wavefont as described in (36). If we average (36) over the transverse Gaussian mode area rtz0 for a small

' ., " m.riratelv recover the simple form (12) with the new dimensionless current j -+ jF where the "filling
, i Ith ratio of the electron bcarn area to the optical mode area [ 1[. The quantity iF p. does no,

S-. .. ~ I t,,r~~n m ,r,i, hut nlv on the current widin the optical mode. In the high-current rcime where
- . " 'l '. ' I { i a"l An (11i r \zj .' W, NC that 1-1:1- intc;action Induces a phase shift that i"s ,p,,ue

/ I . r I I I I ,,,• hrT ':,: i ::. . ' :1' hui ' iiu, r !ri r ' '.' , ;u.. ' i, , Ih ':t liuhl~i,'. ' lliii ttll ii . . itu
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simpler relaoon estimating the critical current density needed for optical guiding,

j * =32 zo (40)

If the normalized Rayleigh length is small, say z0 = 7two IL X = 0.2, natural diffraction would spread the light over a large
transverse area after the interaction length Atx = 1. Optical 2guiding can compensate in a typical high-current case where

-104 > J* = 4 x 10). Note that the relations j* = 16zo 2aF and j* 32 z do not depend on the length of the undultor
L, but express a comparison between the rates of natural diffraction and FEL focusing along t.

Figure 11 shows a simulation that solves (36), together with the pendulum equation, numerically to illustrate FEL
optical focusing. The electron pulse is taken to be long, so that no z dependence is followed; in the transverse dimension, the
electron beam is symmetric in x-y with the parabolic shape j(r) = j(l-r 2/2a1

2) for j > 0, and a, = 0.4. The peak density is
j = 200, and the initial phase velocity of the beam is v0 = 0 for maximum gain in the high-current case. A Gaussian opticalI mode is focused near the beginning of the undulator at T,,, = 0.01 with a Rayleigh length zo = 0.2, and an initial field strength
a0 = 10 at the center of the mode. The field amplitude la(x,'t)I grows along c, and reaches a peak value Ia(0,1)l = 33
(white) at the end of the undulator, points ef zero field amplitude are shown as black. The scale at the top-right indicates the
field amplitudes plotted in grey, and sever- contours following points of constant amplitude are superimposed. Without the
FEL interaction, the mode would smoott ly spread in z because of natural diffraction, but the contours show how the
wavefront is focused back into the electron beam.

11" FEL Opticd GuCfrig- VEE
j=200 ' --0.4 o010 Zo=O.2

V0=

Oo=1 , =0.00

0.0 kA 33.2

I0

Figure 11. Onical guiding in the FEL.

The trapped-particle instability
The extensions explored so far have considered effects in the longitudinal and transverse dimensions up to the onset of

saturation. Typically, the FEL amplifier or oscillator can go beyond the onset of saturation, and may well encounter the
trapped-particle instability [130-133,138,1391. In the simulation of short pulses, we noticed that the optical spectrum
developed sidebands at saturation. In oriler to study the effect without the complications of a short pulse, periodic boundary
conditionS may be taken at the ends ot the. computational window W. Physically, this corresponds to studying a long pulse,
or a (W ieam, ,here tri.l:itiiml inviriance can ho used to examine only one of many repeated sections in the optical

ITo,, R,lition . d, t th u nii V o pair and spectral width that can be. represented. The periodic boundary
m ii'!n I /, l pplhd ti ) .l:i vari.Olc "(- U ,2) " ,':tV 2), v(z -W /2)- -\,(z+ W 0). and a (z -W/2) a (7 -+W/2).

1! ,ri,' f 'A ii i . t v. i tn,n Ow t rap[I l electrons in ph.e-spacc I 3). When the [EEL. rveches
r Ati:r:, ,n, i. i r II - n I,, Ir,% Irtid 1ni11v electrons are trappe'd in the cloed orbits of p ase

I ;I,,'-' r I,( hloii w t ical hol i iell s slowed due to the reduced .vin at
. U 'l ii pha, ; r. n (-r Ihe uriAl lo)lill at pha .e' - . ee'Xn' eI
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V0

Vt) + - Sin( VSt ) (41)
vS

for the initial position (* ,v0). The synchrotron, or trapped-particle, oscillation frequency is vs = (aosin(C* ))212 a12.

When substantial current is trapped, and oscillates at frequency vs, the wave equation drives multiple frequencies around the
tundamental. 7he sidebands appear at v0 ± vs, ad arz shiftecl away from the fiuldamental wpvelength hy AJ = v-/2ir I
The fractional shift is simply interpretated as the ratio of the "number of synchrotron oscillations along the undulator" to the
number of undulator periods. The field strength required to cause one oscillation of the trapped electrons is ao = 47t2 = 40.
The corresponding peak-to-peak height of the separatrix is 4aW/2 

= 25, so that most beam quality effects are minimized.
Figure 12 shows the result of a simulation with periodic boundary conditions in a window of width W = 2, I

corresponding to two slippage distances along the beam. The long electron beam is described by current j = 8 at all points in
the window, and interacts with the optical field window for n = 200 passes. Each pass, the electrons start uniformly spread
in phase at each site z, and at phase velocity vo = 3. The resonator loss on each pass is determined by Q = 6 as in (32). I
Without some source of noise, every site z would evolve identically, and no spectral features could develop. We start the
real part of the optical field with a random component of standard deviation 8a 1 in a normal distribution about the average
value a 0 = I. The resulting steady-state solution is insensitive to the noise source; many alternate noise sources have been
tried, with the same final result. The simulation results do not depend on ao, 8a, or even vo. (If vo = -2.6 were used, so that I
there is initially absorption, the small frequency components at v = 2.6, due to the noise, would grow over many passes until
the same final result as Figure i2 is atutained; the only difLea'Cnce would be.. ze !-rge: number -f passes required tn re.qch
steady-state). The electrons and light slip past each other in the calculational window W, just as in the short pulse simulation
of Figure 10.

XXXV" FEL_ Wrap EvukJton IXXXXX

J-6' O o- a1 bG=1 P 0=3 I
O(z,rOl o I 46 P(I,, fJ-,fr

200 A I

-Z sos so
I

20-SO v S 005

Figure 12. The trapped-particle instability with periodic boundary conditions.
In :igure 2 the power grows to normal saturation rapidly, in about 20 passes. At normal, single-mode saturation, the

(n (,hown at the bottom-left) drops, and the optical power P (n) (shown at the bottom-right) is constant for about 100
paLsC,. During this time, the optical field amplitude l a (z,n)l evolves (shown at the left) and develops a modulation equal
'o (n Iipp dit ficeh calculational window is two slippage lengths long. The grey scale shows the peak field
01th ptu r (, rl 46 in wOhitc, and zero field in black with two contours. The onset of the trapped-particle instability I

- p c ir siufficient to :ause one synchrotron oscillation of the trapped electrons on each pass. As the
ptr. field . itcs and execute one synchrotron oscillation, they modulate the wave envelop. The
., h- -ihand frclhlncy associated with the modulation of the field envelop. lle peaik field of
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The general features of trapped-particle instability in the FEL oscillator depend only on the dimensionless current j
and the loss factor Q. Increasing either j or Q makes the trapped-particle instability more severe. Numerically, some
source of noise is essential, but the details are not important. In steady-state, there are just a few synchrotron oscillations of
the trapped electrons in each pass. Over many passes, the optical wave "sees" many repeated synchrotron oscillations at the
same frequency, and the sidebands grow to saturation. Most of the normal values of j and Q give rise to the instability as
hae been observed experimentally in the LANL FEL [82]. In fact. it is not easy to make j and Q small enough so that just a
single sideband occurs as shown in Figure 12. A slight increase in either j or Q will produce more sidebands at multiples of
vs away from the fundamental; then a chaotic spectrum with many lines develops. The chaotic spectrum [132] does not
reach a steady-state, and is several times wider than the normal gain bandwidth.

The FEL amplifier with high current density j >> 1 can reach high power in a single pass. The growth rates are large
enough that electrons can be trapped early in the undulator, and begin executing synchrotron oscillations. There can be
several to tens of synchrotron oscillations along the undulator, but these are the only oscillations experienced by the optical
field. Even with far fewer synchrotron cycles than in the oscillator case, the large current density j can give significant
sideband gain once trapping occurs. The sources of noise are much more important in the FEL amplifier than in the FEL
oscillator. Suppression of input noise at the sideband frequency could be an important method for avoiding the trapped-I particle instability in amplifiers.
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1 11. Distribution Functions Describing FEL Beams

The integral equation developed in an earlier section can be used to study the

effects of beam quality in high current FELs, like LLNL Paladin FEL. In order to use

the integral equation to examine the effects of beam quality, several different

distribution types are developed. The distributions in the electron phase velocity are

derived in terms of the velocity spread and angular spreads in the beam. Only the z

component of the electron velocity occurs in the definition of the phase velocity,

v = L[(k+ko)pz-k].

The integral equation can be written as

a(Tr) = if ds s F(s) e- iv os a(rC-s) , (82)

where a(r) is the complex optical field, a(0)= ao is the initial optical field, j is the

dimensionless current density, and

F(s) =fr.dq e- iqs f(q) , (83)

is the characteristic function of the electron distribution function f(q). The

characteristic function is just the Fourier transform of the electron distribution function

f (q), and f (q) is the distribution of the initial electron phase velocities vi = vo+q about

vo. The distribution function is normalized, Jdqf (q) = 1.

The characteristic function is the important factor that carries the affect of the

electron distribution function to the FEL optical field. When the distribution is narrow,

f (q) z 6(0), the characteristic function has the value F(s)Z 1 so that the field

evolution depends only on the dimensionless current j and the initial phase velocity vo .

The initial field growth rate is zero, because the initial value of the integrand of, 82) is

se-JVOSao =O . Later in time, the integrand becomes sF(s)e-'v°Sa('-s) and is

proportional to the field strength. Recalling the derivation of the integral equation, note

that the integrand measures the development of bunching in the electron beam as a

result of the presence of the field a(t-s). As bunching develops, the field growth rate

I a (-r) increases leading to further growth. When the distribution function is broader, we

will see that the magnitude of the complex characteristic function decays in s along

the undulator length. The detailed features of the decay retard the development of

bunching and the increase in the growth rate due to bunching. Ultimately, it is the

I
I
I



-74- I

I
shape of the electron distribution function that determines the decay in the beams

ability to bunch.

The imaginary part of the characteristic function is . measure of the asymmetry in

the distribution function. The imaginary part is

F (T) = Fi F * 1 f i dq ( e - qs f(q) - ek s f*(q) (84)2 2 ~ )e ~)

Since f (q) is a probabilistic function, it is real, f = f*. So

F/(E) = -1 dq e-iqc [ f (q) - f (-q) ]. (85)

If the distribution function is symmetric, f (q) = f -q), then the characteristic functiQr,-.. "

F('r), is real. If the distribution function is asymmetric so that f (q) # f (-q), then the

characteristic function is complex.

When the distribution is directly a function of the electron energy or Pz, the v- I
distribution has the same form as the P3z-distribution. The spread can alsc be related

to the energy spread, GG = 41cNAy/y. An example is the Gaussian, or normal,

distribution,

f (Vi) = e -(Vi-v°)2/2o , (86)

where OG = LkAz relates the characteristic velocity spread AI3z to OG" I
The Gaussian distribution function shape can be written as

e -q 2/2a6

f (vi) = e- => f (q) (87)
2___G  _ (87)

The corresponding characteristic function is

F(u)= Jdq eq, f (q)=- dq e- iq  , (88)

or -

F( )e = Gt2 (89)

The characteristic function is real, because the Gaussian shape is symmetric.

The magnitude of F(r) decays exponentially with a characteristic time (3-. Bunching

I
I
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I in the integrand of the integral equation decays rapidly as the spread (YG is increased.

For large aG :. 1, the growth rate of the optical field is severly reduced by beam

quality.

A similar simple shape is the Cauchy, or Lorentzian distribution,

f (vi) = -L - 1 (90)

I The characteristic function is evaluated from

F(r)=f dqe -q [ 1 1 J (90)7r(L I +q21 L

i and is

a F(,r) = e - '- t  
(91)

The characteristic function is again real, because the Lorentzian is symmetric. The

decay is exponential with a characteristic time aY1, but the form of the decay in the

integrand of the integral equation is different than in the Gaussian case.

An angular spread in the beam gives a more subtle relation to the v-distribution,

because the electron's z velocity is quadratically dependent on the angle of

propagation with respect to the undulator. At present, we do not consider betatron

motion, so that this analysis is only appropriate to weak undulators with K small. For

small angles 0 with respect to the undulator axis, the electron's z velocity is reduced

by

P p=ocos z 13o ( 1 _ 02/2 ) (92)

The corresponding change in the phase velocity is

v(O) = L[(k+ko)po-k-(k+ko)po0 2 /2] = v(O)-NXok0 2/2 - v(O)-2iN y20 2/(1+K 2) . (93)

A misalinnment of any sian. ± 0. gives the same decrease in the electron's z velocity.

When the angular spread in the x and y directions are unequal, the v-distribution

is considerably more complicated. Take the probably of an electron in the beam

entering the undulator with angle 0, in the x direction, and 0y in the y direction, to be

I given by

p( e '-2 ex '1.Ayx 2(4

e--- where 02 =02 02 (94)

I

I
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where the spread in the x direction is Ax and the spread in the y direction is Ay. The 1
angle away from the undulator axis is 02 = 0 2 + 0 2 . The formal expression of the

distribution function is
e7~ y ..g2 I

f (vi) = E I 8(vi+vo + 2 Ny 2(02 + 02)/(1 + K2)) e -e2/2,e (95r>)2
0"'S Oy'S 21 xy

The delta-function is evaluated by

(. ) = (0x.-Oxr)(1+K 2)/4tNy 20Xr (96)

where the roots are I

O0,. =±{( 0-v,)(1+K2)121cN-f 2_02] 1/2 (97)1

and

emax = (vo-vi)(1+K 2)/21cN 2 . (98) 3
so that Oxr is real. Inserting the root and evaluating the delta-function leaves only one

sum over y 's, 3
f (vj) = 2 E e ee /2 e/2A (1+K2) (99)

eys 47Ny 2 (Vo-v)(l +K2)/27cNy 20 2lAxAy

To simplify the expression define

41cNy 2A 2 4rNy 2A2

Ox 1+K2  and (TOy- 1 (100)

After some manipulation, the remaining integral has the form

f 1 2 ee-X(v°-vi)(Oox-iey)/
2ax Oey_o__1oi

2  I
fdx e-x(2-x)(

The integral can be found in Gradshteyn and Ryzhik, p. 315, and the final v-

distribution is

f(vi) = e-(vo-v)(oe,4 j5Y)/2cF~o ,coy Jo i (VC -V i) ,goX - oy Ix  (102) I

for v, < vo, and zero otherwise. Since Jo(x) Jo(-x), the argument of the Bessel

function can be written as ((o, - ooy) - Iax -50y1. I
I
I
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In the case that a() = cey , Jo(O) = 1, and the electron v-distribution becomes

the exponential distribution,

f (vi) = e-(V°-Vdlr , (103)

i where oe = oox = oey = 41cNy 2A21(1+K 2). We will derive the exponential distribution

later from the more basic approach.

The distribution function for the asymmetric angular spread can be written as

eq iq lao--aoy
f___ (q = FYGGYJ I 2'oxg (104)" CO Oy Jo 2 0ex 0y

for q < 0, and zero for q > 0. The corresponding characteristic function is given by

0e q. +a 0 I jOGy
F(T) = dq e- q  Jo(iqA_) where A, _ 2g+%y (105)

The integral can be found on p. 707 of Gradshteyn and Ryzhik, and gives

SF(c) = 1 (106)
- 1 06

I Using the definitions of o;. and 0 0y the characteristic function is found to be

F() = 1 (107)

The asymmetric exponential electron distribution function from a symmetric
spread can be written as

(v) e-(V°-VY)aq e la

f(vi) => f (q)= O , (108)I GOG

for q < 0, and zero for q > 0, and oo is given above. The characteristic function is
given by

3F()=fdq e iqt , o (109)

3 and is

F( ) -cr, ) (11!0)

I
I
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The characteristic function of the exponential distribution is again complex, becduse I
f (q) is asymmetric. The amplitude decays more slowly than the Gaussian or

Lorentzian cases.

These examples are derived from realistic physical conditions, but mainly form a

set of distinct siapes that serve as candidates for studying the affect of shape on the

FEL interaction properties. An experimic , is usually not able to predict the shape of

the electron distribution function so that precise correspondence is not the goal. The

main interest is to establish the importance of shape.

12. FEL Theory In Weak Optical Fields U
The integral equation was used to evaluate the effect of gain degradation with

several distribution functions. The characteristic function for each of the distribution

fu'nctions was calculated as in the last section of this report, and then used in the

integral equation. The publication reference is W. B. Colson and J. Blau, "Free U
Electron Laser Theory in Weak Optical Fields", Nuclear Instruments and Methods in

Physics Research A256, 198 (1987). I
The gain degradation from various electron beam distributions determines

important design criteria for the accelerator-laser interface. The theory presented in

this publication uses a convenient, yet powerful, method of including an arbitrary

electron distribution function in a self-consistent integral equation for the complex

optical field. The method has advantages over a plasma stability analysis or a

numerical particle simulation.

The FEL integral equation is proving to be a useful theoretical tool for evaluating

gain degradation with electron beams of poor quality. Furthermore, the electron |I
distribution function shape can have a significant effect on the amount of gain

degradation in an FEL system. There are important opportunities here to optimize the

coupling between the FEL and its electron source. It may also be possible to make

further improvements in the performance of an FEL by altering the electron distribution

from the electron source as it travels to the FEL undulator; wake fie!d effects caused 3
by the electron pulse interacting with the metallic walls of the transport channel can

change the dlstribution.

I
I
I
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3 198 Nuclear Instruments and Methods in Physics Research A259 (1987) 198-202
North-Holland, Amsterdam

I Sectioi VI. Theoretica!

FREE ELE(TRON LASER FHEORY IN WEAK OPTICAL FIELDS

W.B. COLSON

l Berkeley Resear "h Associates, P.O. Box 241. Berkeley, CA 94701, USA

J. BLAU

Physics Department. University of California, San Oiego, CA, USA

In weak optical fields, free electron laser dynamics can be expressed in the form of an integral equation. The integral equation is
used to evaluate the gain degradation from various electron beam distributions and determine important design criteria for the
accelerator-laser interface.

1. Introduction where the dimensionless time is T = ct/L, L = NX o is

the undulator length, and fl3c is the electron z velocity.
The free electron laser (FEL) uses a relativistic eiec- Two electrons with different z velocities owin6, to an

tron beam to amplify a co-propagating electromagnetic initial energy difference Aymc z, will have a phase spread
wave passing through a periodic undulator [1]. In either 4rrNAy/y at the end of the undulator. The natural

the high-g in amplifier or the more modest-gain oscilla- dimensionless quantity with which to measure an en-
tor, maintaining coherence of the electron bunches over ergy spread is therefore a = 477NAy/y. When o = 7r, the
a significant interaction length imposes important re- phasz spread is = r, and coherent bunching begins to

strictions on the electron beam quality. Electron accel- be degraded.
eratnr and storage ring technologies usually present a An angular spread is also possible due to the finte
trale-off between beam current and beam quality that emittance of an electron beam. An electron of energy
make it essential to accurately evaluate the role of beam "Ync2 entering the undulator with a small injection

quality in the high gain regime. It is particularly im- angle has its z velocity reduced. The natural dimension-
portant for FELs designed to operate at XUV or X-ray less quantity with which to measure an angular spread
wavelengths [2]. The theory presented here uses a con- is
venient, yet powerful, method of including an arbitary

electrjn distribution function in a self-consistent in- 4rNy2AO/" + K 2 ),
tegral equaion for the complex optical field [3]. The where K = eBA 0/21rrnc 2 with B as the rms undulator
method has advantages over a plasma stability analysis field strength, e is the electron charge magnitude, and
or a numerical particle simulation [4-111. 1O, is the width of the actual spread. When g= -r, the

resulting phase spread = w, so that coherent bunching
begins to be degraded as with the energy spread. These

2. Beam quality in some typical experiments dimensionless quantities allow us to compare different
types of beam distributions on the same basis

In order to bette understand the detrimental effects In the Maxwell-Lorentz FEL theory [3], the high-
if poor beam quality consider . :me simple examples. gain regime can be described using the dimensionles

Coherent bunching of the electron phases is the key current density

element to any FEL gain mechanism. The electron 2 3
pha ,t with respect to the combined optical and undu- j= 8N(e-rKL) plyme,

Iit. f, i', where p is the electron particle dentsity. If 1. the

:FI-L opefates in the low-gain reg1ime 'W it !I1e peak gainI I; := 0 135J, the gail- spectru is cAnterd it an initial
Alptc- 2 - .ph - ,.l citv I" -- I'(0) i.6t 'kit a ,.id t

S i, .. ' : l ii-,k ;i _i t . c i- t , mi l Ift- i, 1, (tic FH .1 trpcrmi(tN h-

I I I

I
I
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Tihie I Gaussian:
iartidionl of sonic FEL expernmenis and their rcspectiveexl

_______________________________ qu0te for all v,_ (3)

StaoforJl 1980) 2 =10 10' 160 - Lorentzian:
[I N EiF Induction _ _ _ _ _

t~a:t19SS) 2 5(W)O 2 2 30 f(i)for all P,, (4)
I A NL linac (I1Q86, 60 t0 1 36 + ( 0~(~, -O VoK

Boeing/Spectra hna3, 3 where aG, a 1 4 irNy/y for an energy pread. The
(1986 8U inc 200 10 22 750 Lorentzian has a fwhm of 2 0L with a peak value 1/770L

Stanord (A'S(Orlgelocated at P.0 ; T'he Gaussian has a fwlm of 2.35 a,; with

ring 500 2 .10- 237 a peak value l/Vf~wa also located at i', The two

distributions are comparable in shape for the samei
spread, but we will find that their resultant gain de-

V, 0 with a characteristic width 45j, 4j'/6. gradation can be quite different.

Table I compares some experiments and their re- A distribution due to an angular spread is asymmet-

spective beam qualities. As can be seen, many experi- i-ic, because electrons can only be slowed ckiwn byI
mien's are now well into the hligh gain regime, but also traveling at a random angle with respect to the zaxis.

sulfer some gain 6 egrad &tion due Lu 6eami quality. Each distribution is found from

Pv (v, - P +- 217N Y292/(1 + K 2)) p( 0,)

3. Tie 'LL nteral quaionwhere p(O,) is the probability that an electron in the
To, accurately e siluate the effects of electron beam beam is propagating at angle 8,. If the angular spread is

:lt.in either the hi-,h or low gain regimes, we use the symmetric in x-y, a "circular spread", the distributionU
F F1I intu' r equation [3 1 The complex electric field function becomes the exponential distribution

FT E je", of the light wave is governed by x -(X
%kalowae equation and electron Lorentz f() {ep[ V/0] for (5) <1o

d where a. is the characteristic angle away from the
axis. For a spread of angles in a plane, a "linear

a_ - i Cos( M)(1 spread", the distnibution function is

1 \ 'Z I nC 2 s the djmens~oniless opai- 0 efp[ X" (v -1")/

"1 Ireprc!'ents a normalized (6) i)-- - fre<,
in the b eam. Electrons are l-,is

nolal ph~r-pace coordina (O) and
I'In ;"a.pcical .ield , a s <<7, the reference wl'ere 7 is the charai_,erisitc angular pnrersd in 'ie

li~ietctr )n phae, can he explicitly re- Y-directton. The distributions (3) through (6) are 'ourI
hin i eqluations in (1) to obtain cxamples of different electron di-stribution furec, nis

resulting from energy spread, :id angula sed~
Is ( exp( I >'( - In orde r to introduce the distnibution fuictions into

tlte Integral equatio, we note that e- (2) can be wutte n
ln it th[orml

I ~~( 1 lJej~-i ~ (~/v f a)e' i-i
d d
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properties. I-or the distributions (3) through (6) above 5. Gain degradation with modest current

Awe have

Gaussian: In both fig. I and fig. 2 there are four surfaces
plotted. Each shows In(l + G(v 6 , o )) with spreads a =

exp( - /2), aGo, a,., a, or o8,, (the Gaussian, Loientzian, circular, or

Lorentzian: linear distributions are used). For a given current j,

FL() = e'p( -oT each surface starts with the same gain spectrum G(z 0 , a
iL = 0), but as the amount of spread a increases, there are

circular: features common to all the typ,-s of the distributions

F,(r) = 1/(I -iCoT). examined:

and linear: - the peak gain decreases steadily,

F 9,(Tr) = 1/ 1-io0T (8) - the '0-position of peak gain increases away from
FI resonance (v 0 = 0),

Each of these factors describes the characteristic decay - the gain spectrum width around peak gain becomes

in the integrand of eq. (7) while the current density j broader in vo .

increases the size of the integrand as the optical field These qualitative features are common to nearly all of

a(r) grows. Note that the imaginary part of F(,r) is a the distributions examined, but the details of the de-

measure of the asymmetry in the distribution function. gradation can be dramatically different.

If f(t',) is symmetric, then F(r) is purely real. If f(v,) Both figs. la and lb are symmetric diftributions, the

is antisymmetric, then F(-r) is complex. Gaussian and Lorentzian, in an FEL with j 102; this

i (ca) ?i ,oo()I]

4.4 A,_4

Al 4. ..

... 2: o "'44ili It ,4iU -- ' ,1~ ,t 0,

(c) (d)

1 t
4

I
I
I
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current is characteristic of a moderately high-gain FEL 6. Gain degradation with high current
oscillator. For a( = a, - 0, the peak gain is In(l + G) =

4.4, or G = 80. and is positioned just above v0 = 0; the Fig. 2 represents an FEL with large current, j = 104,

gain spectrum width is about SP, = 4j1/6 = 9. Near characteristic of a single-pass FEL amplifier. The peak

P = - 10 and a = 0, there is large loss, or negative gain, gain near resonance for a = 0 is now up to ln(1 + G) =

so that In(l + G) << 0. Note that logically, G ; - 1, and 27 or G = 8 x 10l. The general trends outlined for fig. I
that when In(t 4 G) -- - o, nearly all of the light is I are still valid, but details have changed because of the

absorbed. Surprisingly, at P. = -5, 00 = 8 in fig. la, higher current density j. The linear angular spread

and at v, = - 2, a, = 8 in fig. lb there is also large loss. appears more resistant to gain degradation than the

In this parameter region, it is possible to decrease the circular spread. In these cases, an FEL could withstand I
beam quality, (that is, increase a) and increase the FEL factors of 102 less beam quality depending on the

gain. To our knowledge, this is previously unknown in specific beam distribution shape. Note also, that it is
FELs. Increasing the Lorentzian spread o L causes the possible to find regions on the gain surface where

gain peak to move less far from resonance than does the increasing the energy spread can actually increase the
Gaussian spread 0 G . gain.

Figs. 1c and Id show asymmetric distributions due The FEL integral equation is proving to be a useful

to the circular and linear angular spreads, ae and a,,. theoretical tool for evaluatir.g gain degradation with

At large spreads these distributions both have large electron beams of poor quality. Furthermore, the elec-
absorption "troughs" that are somewhat independent of tron distribution function shape can have a significant
PO. The linear spread appears to be less susceptible to effect on the amount of gain deg-adation in an FEL
degradation than the circular spread. system. There are important opportunities here to opti-

(b) I

Cc) oc j:ci ooo(d)

17-7IG Ii

• . :l:;'hI I

I
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source. It may also be possible to make further im- 1984)
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1 13. Analysis of Paladin at L = 5m Length

Some of the most important work of the contract came as a consequence of
reviewing the 5m Paladin experimental observations. It was noticed that the measured

gain spectrum was 5 times wider than the natural undulator spectrum. The Paladin

experiment provides a unique opportunity to observe how the FEL gain Opectrum can
be determined by the electron beaam velocity distribution instead of the natural

undulator spectrum. The natural gain, or undulator, spectrum has a width, = 1/2N,

that is determined only by the number of undulator periods, N = 62, over an
interaction length of L = NX0 = 5 m. More of the Paladin parameters are discussed in

an earlier section of this report.

For reference, the figure below shows the natu,-al gain spectrum for a perthr.t

beam with j = 50. There is no significant loss region, and the peak gain is G = 21

near resonance.

I
Gain 21

* j=50

i5V 35

Gain spectrum with j = 50 and an ideal beam.

For more realistic beam distributions we consioer candidates from a Gaussian

spread where oc = 4itN<-y> / y, a symmetric angular spread where

i o = 4TcNy 2<60 2> / (1+K2) and 60 is the characteristic angle of an electron in the bea,i.

For Paladin the observed brightness establishes that GG = 10, or ce = 10, but the

shaped is distribution is left unknown.

The weak-field gain spectrum was measured at 10.6l.m optical wavelength by

varying the undulator field strength B over a small range to change the resonance

condition. The gain spectrum was observed to be roughly antisvmmetric in shape with

a peak gain (arid absorption) of G 0.5, and a width : 5 times that of the natural

undufator spectrim. The shape, overall width, arid peak value of the measured gain

I
I
I
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spectrum are dramatically altered from the idealized gain spectrum, and in this case,

are determined primarily by the distribution of electron velocities along the undulator

axis. The FEL integral equation is used to estimate some of the detailed features of

the electron beam distribution from the 5m Paladin gain spectrum measurement. The

gain spectrum shape and width yield unique information about the actual emittance,

energy spread, undulator focusing, and beam positioning in the experiment.

Below are the gain spectra for j =50 and OG = 10, and oo = 10.

Gain 0.38

-35 V 35

Gaussian spread.

Gain 0.98

-35 V 3500

Exponential distribution from a symmetric angular spread.

The gain spectrum information was compared with the experimental gain spectra,

but there is so much shot-to-shot variation in the current and beam energy that the

gain spectrum shape was difficult to determine. The gain evolution along the

undulator, described below, became a much better method of finding the' best

distribution function shape. I
14. Phase-Space Evolution in Paladin

The integral equation (82) can be used to solve for the evolution of the complex 3
optical field, a(t). When the history of the field evolution is known, the pendulum

equaition (7) can be used to recreate the phase-space motion of some sample

,letrons. In the examples here, the tapering factor 6 is set equal to zero because it

wi.- ro incorpormted in the integral equation initially, and the factor (1-.3v'47:N) - 1

I
I
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I because the integral equation assumes weak fields. The integral equation is solved

numerically and the complex field a(tr) is saved at each t-step. From the known

quantity a('t) = la(r)lexp(i)(t)), we determine v(t) and (t) by numerically integrating
00 oC(1 ) = v (T) a a(-r) I cos( C + ('c)).(1 )

The integral equation solution is valid for any weak optical field so that ao is chosen to

illustrate the electron motion most clearly. The initial field value is selected so that the

maximum 3lectron phase change A, is about ic, but no electrons over-take or fall-

behind any other electrons.

* The figure below illustrates the phase-space evolution as determined by the

integral equation. The parameters are chosen to characterize Paladin with a L = 15 m

undulator. The dimensionless current is j = 1200 and the spread in the v-distribution

is (5G = 50 with a Gaussian shape. The gain, ln(1+G('t)), is plotted against E, the3 undulator length. The beginning of the undulator is c = 0 while the end of the

undulator is r = 1. After a small bunching time 'tB = 0.05, the gain is exponential and

reaches the final value G = 35 %. The optical phase grows linearly in 'r and reaches

the final value A0 = 0.04. The phase space plot in ( ,v) shows the final position of

several sample electrons, but the distribution is actually continuous. The sample

5electron are initially spaced uniformly in and v and the larger, darker sample

electrons represent more real electrons at the peak of the Gaussian distribution. The3 center of the initial distribution is above resonance at vo = 50 for maximum gain under

these conditions. Most of the sample electrons remain close to their initial positions,

but those near resonance are distorted slightly because of bunching. The separatrix

path, v, = 2ia l[l+sin(Qs+±)], shows the only region in this weak field, ao = 2, that is

affected by the interaction. Only a few of the electrons participate in the interactio2

when the beam quality is poor. The result for these Paladin parameters is a great

deal of gain degradation because of beam quality.

I
I
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** ]EL R3igh-Gain.Phase-Space**

o I
150 InlG

. .. . . . . . . . . . . .

-15 0L - himitnin*m n ... . .. . .

-n/2 3n/2 0 T 1

For comparison, the integral equation is solved below to find the phase-space

evolution for a nearly perfect beam with OG = 1 and j = 1200. The peak gain in this
case is at the initial phase velocity vo = 0, and the initial weak field is chosen as
a o = 0.1. After some bunching time tB = 0.25, the gain grows exponentially to a final
value of G = 1.Cxl 05, while the phase shift is AO n. In this case, the whole beam is
represented by sample electrons all starting at vo = 0. The bunching in the beam is 3
clear, and more importantly, it is clear that the whole beam participates in the gain

process.

* FEL High-Gain Phase-Space *

j=1200 vo=0 aGc 3

3.13
11 o,+0 12.o I

0

n/2 r31/2 1
:.! :: :: : :

::::::::: ::::I

I
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15. Paladin at L = 15 m

One of the highlights of the beam quality research is to identify characteristics of
the Paladin 15 m experiments that are unique to the distribution function shape. The

distribution function shape in a complicated accelerator and transport system like
Paladin is hard to predict. But, an emittance filter was used to decrease the current
and improve the beam quality entering the undulator. T. Scharlemann performed a
detailed study of the filter and transport system, and concluded that the distribution3 function shape looked something like the exponential distribution given above.

Below is the phase-space evolution found by solving the integral equation with3 the exponential distribution of width aY = 50, and j = 1200. The beam is started at
vo = 12 for maximum gain under these conditions. The maximum gain is found3 experimentally by searching through undulator field strengths K.

i ** FEL High-Gain Phase-Space *
j=1200 V0=12 a0=50

112 1+G 0.9

• • 0

S-1 12 L .............................

-/2 C 3nt/2 0 t 1

The range explored changes the observed gain primarily because the resonance
condition is changed rather than a significant change in j. The large, dark dots
represent ',.e peak in the exponential distribution and the small dots represent the tail
towards smaller values of v. As usual, only a small part of the beam contributes to
gain an( most electrons are not significantly affected by the interaction.

I
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A surprising and distinguishing feature of the evolution above is the gain

evolution, G(tr). The other distribution functions presented above and the others that

have been examined do not have the dramatic plateau of zero or even negative gain

about half way along the undulator at -r = 0.5. The optical phase evolution 0('r) also

shows the plateau feature, but less dramatically.

The gain along the Paladin 15 m undulator was measured, and presented at the 3
April '88 American Physical Society Meeting [D. Prosnitz, T. Orzechowski, et. el., APS

Meeting, Baltimore MD (April 1988). The results on the next page also show the 3
prominent plateau in the middle of the interaction length. While not conclusive, it

appears that the shape of the distribution function in the Paladin experiment has I

resulted in not only a decrease in the gain from an ideal beam, but a change in the

time-evolution of the interaction strength or growth rate. It is remarkable that the

Paladin distribution function can "wait" until half way through the undulator and then

turn off" the FEL interaction. Even if the Paladin plateau is not caused by the

exponential distribution (as the evidence suggests), it has been shown that the I

exponential distribution function shape can produce a plateau in the gain evolution,

G3
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16. North-Holland FEL Review Paper

During the contracting period, a review paper describing the theory of FELs was I
completed. The paper will Chapter 3 of an FEL Handbook published by North-Holland
and is titled "Classical Free Electron Laser Theory". The topics covered in the chapter

are dimensionless variables and experiments, electron trajectories in the undulator,

spontaneous emission, the FEL optical wave equation, FEL electron dynamics, the
low-current, low-gain FEL, the collective, high-current, high-gain FEL, FEL coupling to
higher frequency harmonics, gain degradation due to beam quality, strong optical fields

and saturation, the FEL klystron and tapered undulator designs, FEL Lagrangian and
Hamiltonian, mode competition and coherence development, longitudinal multimode

theory, the FEL trapped-particle instability, short optical pulses in FEL oscillators, FELs
using waveguides, FELs using a Gaussian optical mode, and general transverse mode
theory and diffraction. I
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